

Demand-Aware Route Planning for Shared Mobility Services

Jiachuan Wang*, Peng Cheng⁺, Libin Zheng*, Chao Feng[‡], Lei Chen*, Xuemin Lin[#], Zheng Wang[‡] *The Hong Kong University of Science and Technology, Hong Kong, China +East China Normal University, Shanghai, China #The University of New South Wales, Australia ǂAI Labs, DiDi Chuxing, Beijing, China

Outline

- Motivation
- Problem Formulation
- Algorithms
- Evaluations

Background

Development of *shared* mobility.

- Food delivery
- Ridesharing
- Crowdsourced parcel delivery

Online platforms for shared mobility

- Cainiao
- Meituan
- Uber
- Didi
- …

美团 **DiDi**

Route Planning for Shared Mobility

• A **large** amount of **dynamically** arriving requests

• A **large** amount of workers

Route Planning for Shared Mobility

• A **large** amount of possible route allowing share

• **Limited** response time

Route Planning for Shared Mobility

Large amount of dynamically arriving requests

7

• Limited response time

Keep the Balance of Demand-Supply

Great profit loss from *unmatched* distribution of *demand* and *supply*

• **Rush hour (ridesharing)**

- \triangleright Morning: rural areas \rightarrow center of the city
- \triangleright Evening: center of the city \rightarrow rural areas

- **Lunch and supper time (food delivery)**
	- ➢ Tons of orders sent to business central

Prediction of Demand

Derive demands in different areas/timesteps accurately using **spatiotemporal** prediction. (e.g. DeepST*)

*Figure is Provided by Junbo Zhang

How to use it to benefit route planning for shared mobility?

Supply Organization

In each **area** and **time span**, a larger total **time duration** of workers leads to a higher probability to serve a request.

Different **route planning** strategy \rightarrow \rightarrow Different **distribution of supply**

Organize **supply** according to **demand** to maximize profit.

Motivation

Design an algorithm to **improve the effectiveness** of *route planning* for shared mobility through:

Evaluating the effect of **supply** during route planning based on **demand**.

The **overall profit** of the platform is **improved**.

Outline

- Motivation
- Problem Formulation
- Algorithms
- Evaluations

Workers and Requests

Workers and Requests

**Yongxin Tong et al.: A Unified Approach to Route Planning for Shared Mobility. [Proc. VLDB Endow. 11\(11\):](https://dblp.uni-trier.de/db/journals/pvldb/pvldb11.html#TongZZCYX18) 1633-1646 (2018)*

1. Demand number map (DN)

- ➢ **Number of requests** in each time span and area
- \triangleright Predicted using deep learning model*

- 1. Demand number map (DN)
- 2. Supply number map (SN)
	- ➢ **Number of workers** in each time span and area

- 1. Demand number map (DN)
- 2. Supply number map (SN)
- 3. Demand-Supply Balance Score (DSB)
	- \triangleright Each route plan affects future supply and balance
	- ➢ Statistically analyze the expected **profit** of the balance

- 1. Demand number map (DN)
- 2. Supply number map (SN)
- 3. Demand-Supply Balance Score (DSB)
	- \triangleright Each route plan affects future supply and balance
	- ➢ Statistically analyze the expected **profit** of the balance

19 Local Balance , (Expected # of matchings) Local demand () and supply () Analyzed based on *Poisson distribution* Change of

Demand-Aware Route Planning (DARP) Problem

Given a set of workers W, a set of requests R, a demand number map DN, the DARP Problem is to find the sets of routes S for all the workers to minimize **Demand-Aware Cost (DAC)**:

$$
DAC(W, R, DN) = \frac{\begin{bmatrix} \text{Cost from workers'} & \text{Cost from Demand} \\ \text{moving distances} & \text{Supply Balance} \\ \hline \alpha & \sum D(S_{w_i}) \end{bmatrix} - \begin{bmatrix} \text{DSB}(\beta, S, DN) \\ \text{DSB}(\beta, S, DN) \end{bmatrix} + \begin{bmatrix} \overline{\sum p_i} \\ \overline{\sum p_j} \\ \hline \gamma_j \in \overline{R} \end{bmatrix}}
$$

Such that:

- 1. at any time the total capacity of requests of any worker should not exceed its **capacity** a_i ;
- 2. each request meets its **deadline**;
- 3. an assigned request cannot be assigned to another; a rejected request cannot be revoked.

Demand-Aware Route Planning (DARP) Problem

Given a set of workers W, a set of requests R, a demand number map DN, the DARP Problem is to find the sets of routes S for all the workers to minimize **Demand-Aware Cost (DAC)**:

We prove the DARP problem is **NP-hard** by reducing it from the basic route planning problem* for shareable mobility services. We further show that **no** deterministic nor randomized algorithm can guarantee a **constant Competitive Ratio**

Running Example

raphy 1. Dupply Funnocl map						
	$N_{\rm 1}$	$N_{\rm 2}$	N_{3}	N_4	N_5	N_6
$\scriptstyle T_1$	1.7	3.8	2.5	2.3	0.5	1.3
$\scriptstyle T_2$	3.3	2.1	1.7	1.1	3.2	2.9
$\scriptstyle T_3$	3.5	3.3	2.0	0.7	3.8	1.4
$\scriptstyle T_4$	3.6	1.3	2.4	3.0	1.2	2.6
$T_{\rm 5}$	0.5	2.5	1.4	1.3	1.6	2.3
$\, T_6$	3.4	2.0	1.0	3.7	2.2	3.8

Table 1: Supply Number Map

Table 2: Demand Number Map

Time spans $[0-3, 3-6, \dots, 15-18]$ Areas $[N_1, N_2, \cdots, N_6]$

Supply number map **(SN)** and Demand number map **(DN)** are required for cost of Demand-Supply Balance **(DSB)**

Running Example **Route** before insertion

Time duration of w_i in spatiotemporal cells of SN before insertion

Time duration of w_i in spatiotemporal cells of SN before/after insertion

is derived according to the difference of finishing time

Time duration of w_i in spatiotemporal cells of SN before/after insertion

Running Example

Outline

- Motivation
- Problem Formulation
- Algorithms
- Evaluations

Proposed Approaches

To solve the DARP problem, we proposed

Insertion algorithm (single request)

- **Basic** insertion
- **Dynamic programming**-based insertion

Solution for DARP problem

• Insertion-based **dual-phase framework**

Insertion

Insertion: one request \rightarrow one worker's route

effective and efficient approach

Original nodes are in the **same order** (search space ↓):

Insertion

Naturally: $O(N^3)$ time complexity

Distance-related cost: $O(N)$ **.**

Existing work* reduces its cost as: additional distances from inserting source and destination are **separable**.

32

Demand supply balance cost: previous $O(N^2)$ and $O(N)$ algorithms are not appliable

> Detour of inserting source affects all the supply from latter nodes.

The Basic Insertion Algorithm $(O(N^3))$

1. **Enumerate** insertion pairs for a length-N route

- \triangleright $O(N^2)$ cases
- 2. For **each** new route, derive the cost
	- \triangleright N + 1 small paths. **Calculate** and **sum up** them cost $O(N)$

The DP-Based Insertion Algorithm $(O(N^2))$

1. **Enumerate** insertion pairs

$$
\triangleright \ \ O(N^2) \ \text{cases}
$$

2. For each new route, derive the cost in $O(1)$ time

 \triangleright **Distance-related cost in** $O(1)$ **: studied***

➢ Cost from Demand Supply Balance (**DSB**): how?

The DP-Based Insertion Algorithm $(O(N^2))$

- 1. Dynamically derive a *check-up table* in $O(N)$ time
	- \triangleright Derive the maximum time to delay for each node.
	- ➢ Divide it into a discretized space. Increasing **DSB** is stored with **time delay**.
- 2. Enumerate insertion pairs \triangleright O(N²) cases
- 3. For each new route, derive the cost *in* $O(1)$ *time*
	- \triangleright Distance-related cost in O(1): studied*
	- \triangleright Cost from DSB: *check in* $O(1)$ *time according to time delay*
- 4. Return the plan with lowest cost

The DAIF framework

- Assign requests **one-by-one**
- Quickly derive a *lower bound* of cost for each worker
	- \triangleright In $O(N)$ time + only 1 shortest path query.
	- ➢ Existing work* derive the lower bound for *distance cost*
		- ➢ We efficiently derive a lower bound for *balance cost*
			- ➢ based on the property of Demand-Supply-Balance cost
- *Sort* → Calculate *exact* cost → *Prune & insert*
	- ➢Derive **exact** cost for each worker ordered by lower bound
	- ➢If the lower bound is larger than current minimal cost, *safely prune* all the rest workers

Outline

- Motivation
- Problem Formulation
- Algorithms
- Evaluations

Experimental Setting

- ⚫ Road Network
	- ⚫ NYC (|V|=61,298, |E|=141,372)
- ⚫ Real Dataset
	- ⚫ Taxi Trips (2013) in NYC (427,093 trip records)
- Synthetic Dataset
	- ⚫ Generated according to the distribution of NYC (452,116 trip records)

Experimental Setting

- ⚫ Compared parameters
	- \bullet e_r : the deadline coefficient.
	- \bullet a_i: the capacity of workers.
	- α , β : the weight for distance/ balance cost.
	- γ : the factor that staying time duration of worker transfer to supply.
	- p_o : the ratio of penalty cost
	- $|W|$: number of workers
	- \bullet g : grid size

Experimental Setting

- Tested Algorithms
	- **GreedyDP***: the state-of-art route planning algorithm using insertion. No demand-related information is used.
	- **SHARE#** : It uses historical information of nodes to choose a route with a higher possibility to pick up passengers along the route
	- **DAIF-B**: our DAIF framework using Basic insertion
	- **DAIF-DP**: our DAIF framework using DP-based insertion

Experimental Results

more requests

Performance of varying number of workers $|W|$

Experimental Results

Performance of varying deadline coefficient e_r more requests

Thank You Q&A

The code and datasets <https://github.com/dominatorX/DAIF>

