

Demand-Aware Route Planning for Shared Mobility Services

Jiachuan Wang*, Peng Cheng⁺, Libin Zheng*, Chao Feng[‡], Lei Chen*, Xuemin Lin[#], Zheng Wang[‡] *The Hong Kong University of Science and Technology, Hong Kong, China +East China Normal University, Shanghai, China #The University of New South Wales, Australia ‡AI Labs, DiDi Chuxing, Beijing, China

Outline

- Motivation
- Problem Formulation
- Algorithms
- Evaluations

Background

Development of *shared* mobility.

- Food delivery
- Ridesharing
- Crowdsourced parcel delivery

Online platforms for shared mobility

- Cainiao
- Meituan
- Uber
- Didi
- ...

美団 し DiDi

Route Planning for Shared Mobility

• A large amount of dynamically arriving requests

• A large amount of workers

Route Planning for Shared Mobility

• A large amount of possible route allowing share

• Limited response time

Route Planning for Shared Mobility

• Large amount of dynamically arriving requests

• Limited response time

Keep the Balance of Demand-Supply

Great profit loss from *unmatched* distribution of *demand* and *supply*

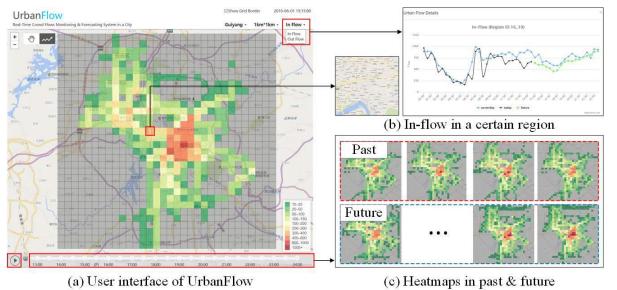
Rush hour

(ridesharing)

- > Morning: rural areas \rightarrow center of the city
- \succ Evening: center of the city \rightarrow rural areas
- Lunch and supper time (food delivery)
 - > Tons of orders sent to business central

Prediction of Demand

Derive demands in different areas/timesteps accurately using **spatiotemporal** prediction. (e.g. DeepST*)

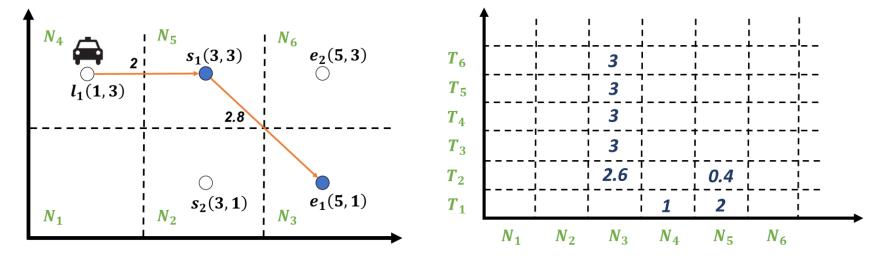


*Figure is Provided by Junbo Zhang

How to use it to benefit route planning for shared mobility?

Supply Organization

In each **area** and **time span**, a larger total **time duration** of workers leads to a higher probability to serve a request.



Different route planning strategy $\rightarrow \rightarrow$ Different distribution of supply

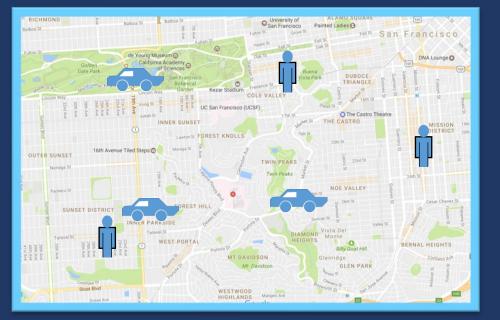
Organize supply according to demand to maximize profit.

Motivation

Design an algorithm to **improve the effectiveness** of *route planning* for shared mobility through:

Evaluating the effect of **supply** during route planning based on **demand**.

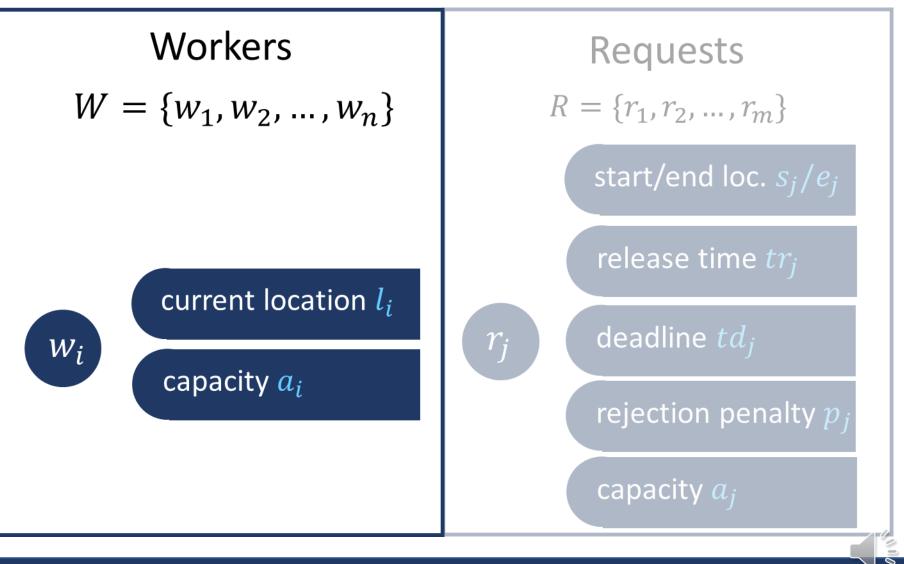
The **overall profit** of the platform is **improved**.



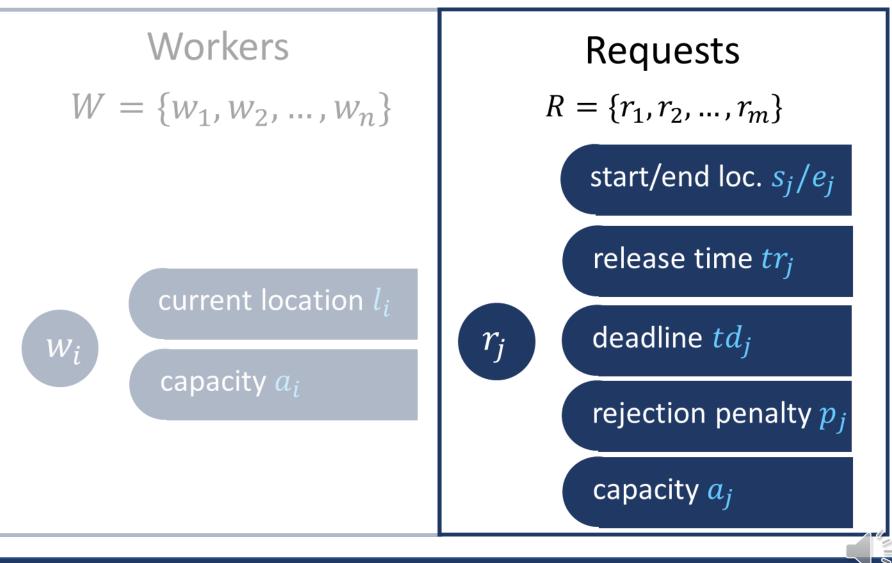
Outline

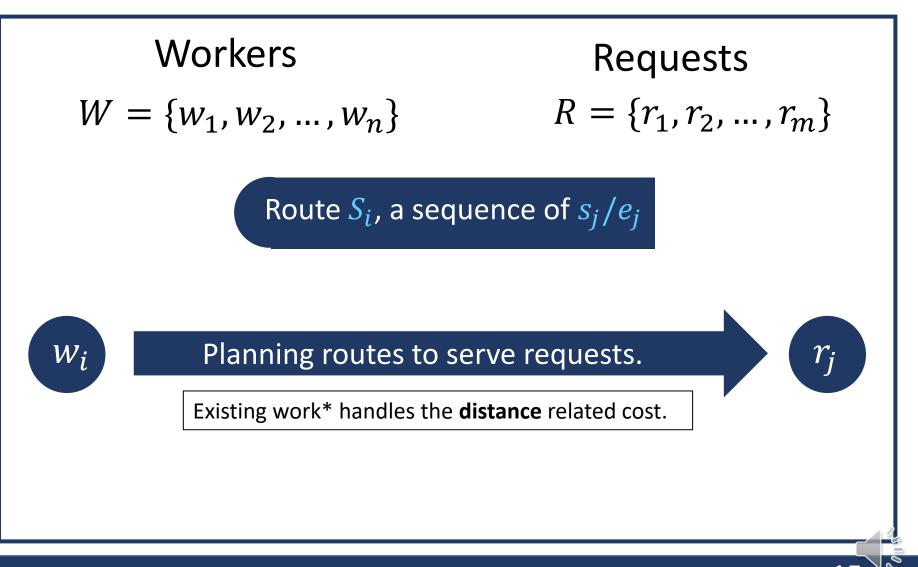
- Motivation
- Problem Formulation
- Algorithms
- Evaluations

Workers and Requests



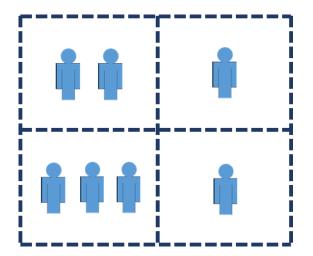
Workers and Requests

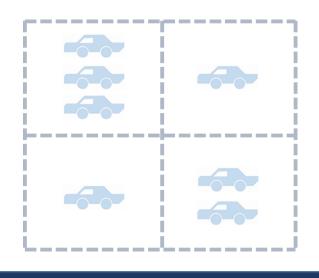




1. Demand number map (DN)

- > Number of requests in each time span and area
- Predicted using deep learning model*

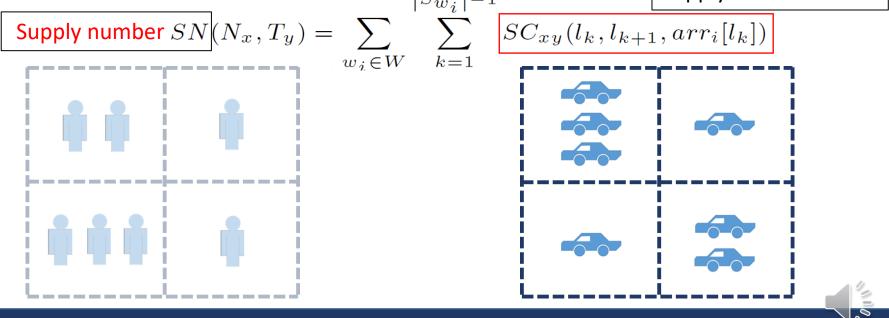




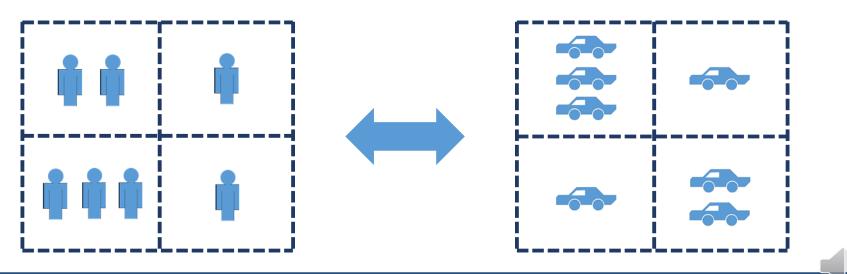
16

- 1. Demand number map (DN)
- 2. Supply number map (SN)
 - Number of workers in each time span and area





- 1. Demand number map (DN)
- 2. Supply number map (SN)
- 3. Demand-Supply Balance Score (DSB)
 - Each route plan affects future supply and balance
 - Statistically analyze the expected **profit** of the balance



- 1. Demand number map (DN)
- 2. Supply number map (SN)
- 3. Demand-Supply Balance Score (DSB)
 - Each route plan affects future supply and balance
 - Statistically analyze the expected profit of the balance

$$\begin{aligned} \begin{aligned} & \text{Local Balance } LB(\lambda, sn) = E(Y) = \sum_{k=0}^{\lfloor sn \rfloor - 1} k \frac{\lambda^k}{k!} e^{-\lambda} + \sum_{k=\lfloor sn \rfloor}^{\infty} \lfloor sn \rfloor \frac{\lambda^k}{k!} e^{-\lambda} \end{aligned} \tag{3} \\ & \text{Local demand } (\lambda) \\ & \text{and supply } (sn) \end{aligned} = \sum_{k=0}^{\lfloor sn \rfloor - 1} (k - \lfloor sn \rfloor) \frac{\lambda^k}{k!} e^{-\lambda} + \sum_{k=0}^{\infty} \lfloor sn \rfloor \frac{\lambda^k}{k!} e^{-\lambda} \end{aligned} \qquad \begin{aligned} \text{Analyzed based on} \\ & \text{Poisson distribution} \end{aligned} \\ & = \sum_{k=0}^{\lfloor sn \rfloor - 1} (k - \lfloor sn \rfloor) \frac{\lambda^k}{k!} e^{-\lambda} + \lfloor sn \rfloor \end{aligned} \\ & DSB = \sum_{x=1}^{\lfloor \mathcal{N} \rfloor} \sum_{y=1}^{\lfloor \mathcal{T} \rfloor} \beta_y \left(sn'_{xy} - sn_{xy} \right) \cdot \underbrace{\Delta_{LB}(\lambda_{xy}, sn_{xy})} \end{aligned} \qquad \begin{aligned} \text{Change of } LB \end{aligned}$$

Demand-Aware Route Planning (DARP) Problem

Given a set of workers W, a set of requests R, a demand number map DN, the DARP Problem is to find the sets of routes S for all the workers to minimize **Demand-Aware Cost (DAC)**:

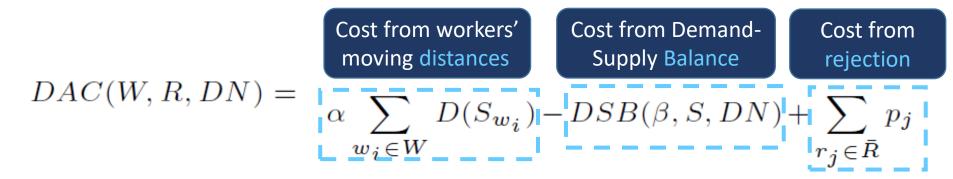
$$DAC(W, R, DN) = \begin{cases} Cost \text{ from workers'} \\ moving \text{ distances} \end{cases} \begin{array}{c} Cost \text{ from Demand-} \\ Supply \text{ Balance} \end{cases} \begin{array}{c} Cost \text{ from rejection} \\ rejection \end{cases} \\ \alpha \sum_{w_i \in W} D(S_{w_i}) - DSB(\beta, S, DN) + \sum_{r_j \in \bar{R}} p_j \end{cases}$$

Such that:

- 1. at any time the total capacity of requests of any worker should not exceed its **capacity** a_i ;
- 2. each request meets its **deadline**;
- an assigned request cannot be assigned to another; a rejected request cannot be revoked.

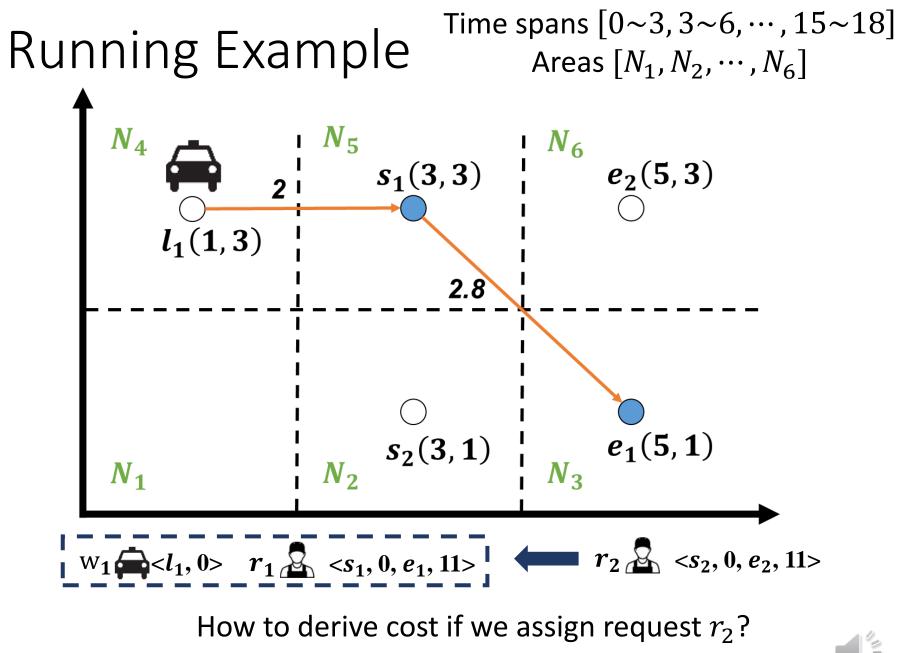
Demand-Aware Route Planning (DARP) Problem

Given a set of workers W, a set of requests R, a demand number map DN, the DARP Problem is to find the sets of routes S for all the workers to minimize **Demand-Aware Cost (DAC)**:



We prove the DARP problem is **NP-hard** by reducing it from the basic route planning problem* for shareable mobility services. We further show that **no** deterministic nor randomized algorithm can guarantee a **constant Competitive Ratio**

1 `



Running Example

Table 1. Supply Number Map						
\mathcal{T}	N_1	N_2	N_3	N_4	N_5	N_6
T_1	1.7	3.8	2.5	2.3	0.5	1.3
T_2	3.3	2.1	1.7	1.1	3.2	2.9
T_3	3.5	3.3	2.0	0.7	3.8	1.4
T_4	3.6	1.3	2.4	3.0	1.2	2.6
T_5	0.5	2.5	1.4	1.3	1.6	2.3
T_6	3.4	2.0	1.0	3.7	2.2	3.8

 Table 1: Supply Number Map

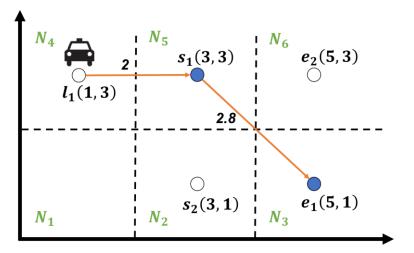
Table 2: Demand Number Map

\mathcal{T}	N_1	N_2	N_3	N_4	N_5	N_6
T_1	2	3	5	2	4	3
T_2	3	2	4	2	3	2
T_3	3	3	4	2	2	2
T_4	3	1	4	3	2	2
T_5	4	2	4	3	1	3
T_6	3	2	3	4	2	2

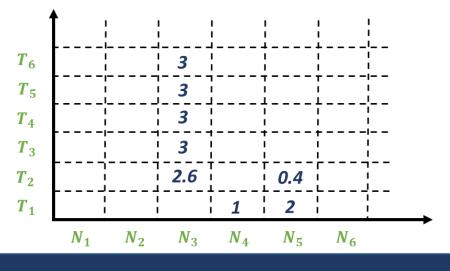
Time spans $[0 \sim 3, 3 \sim 6, \dots, 15 \sim 18]$ Areas $[N_1, N_2, \dots, N_6]$

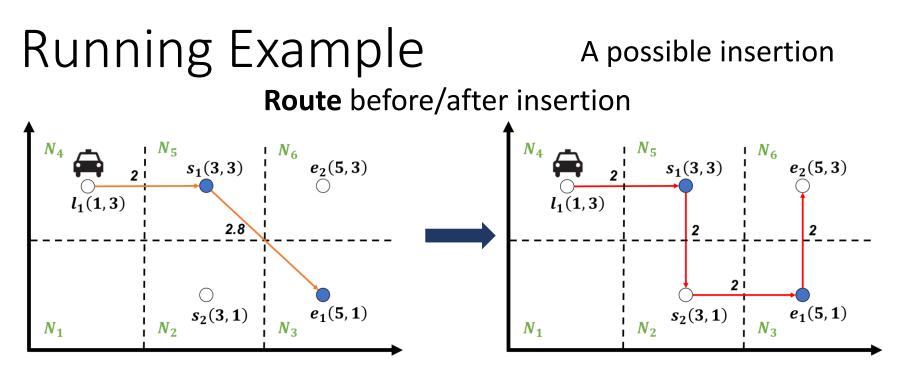
Supply number map **(SN)** and Demand number map **(DN)** are required for cost of Demand-Supply Balance **(DSB)**

Running Example Route before insertion

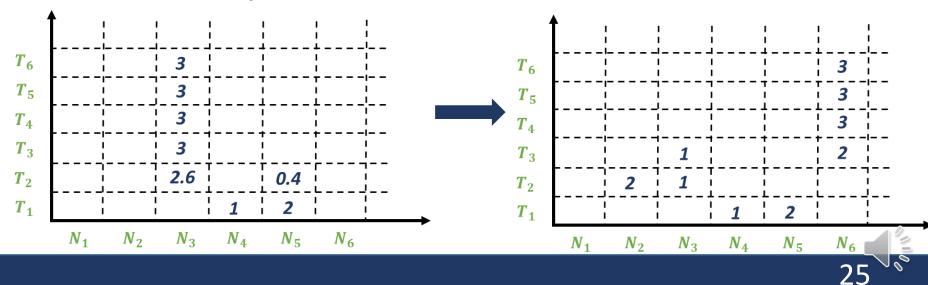


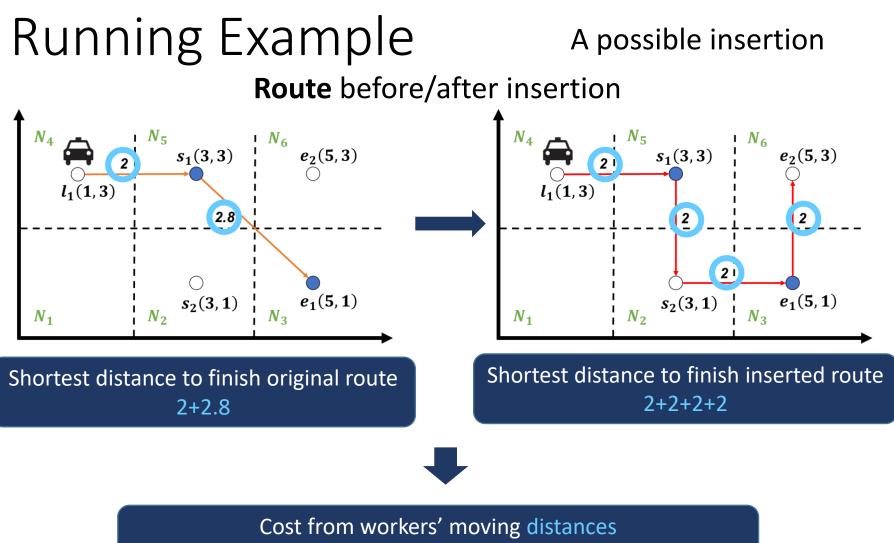
Time duration of w_i in spatiotemporal cells of SN before insertion



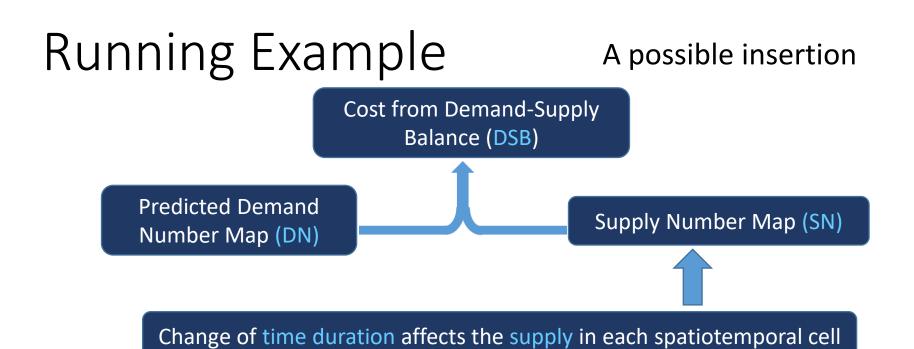


Time duration of w_i in spatiotemporal cells of SN before/after insertion

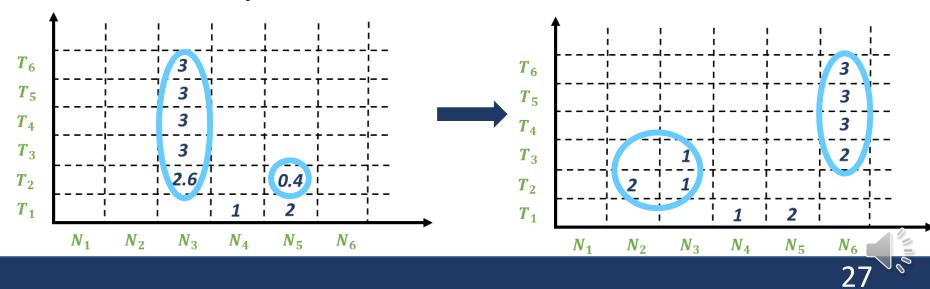




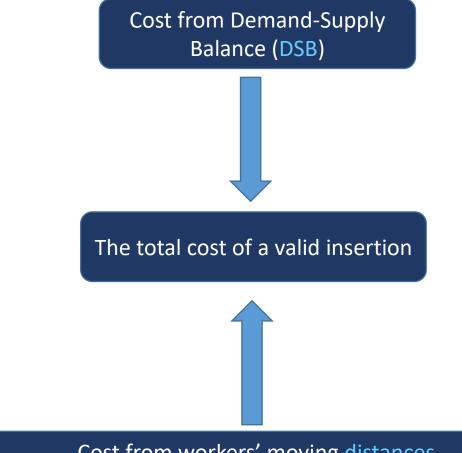
is derived according to the difference of finishing time



Time duration of w_i in spatiotemporal cells of SN before/after insertion



Running Example



Cost from workers' moving distances is derived according to the <u>difference</u> of finishing time

Outline

- Motivation
- Problem Formulation
- Algorithms
- Evaluations

Proposed Approaches

To solve the DARP problem, we proposed

Insertion algorithm (single request)

- Basic insertion
- **Dynamic programming**-based insertion

Solution for DARP problem

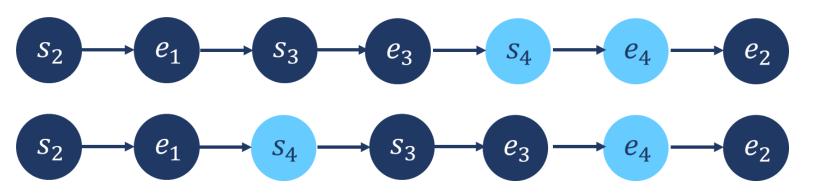
• Insertion-based dual-phase framework

Insertion

Insertion: one request \rightarrow one worker's route

effective and efficient approach

Original nodes are in the **same order** (search space \downarrow):



Insertion

Naturally: $O(N^3)$ time complexity

Distance-related cost: O(N).

Existing work* reduces its cost as: additional distances from inserting source and destination are **separable**.

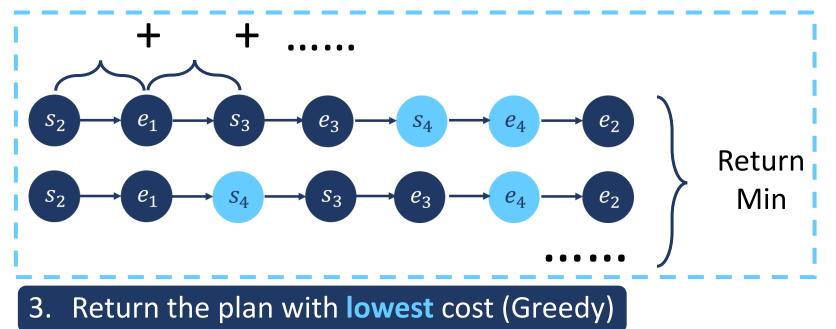
Demand supply balance cost: previous $O(N^2)$ and O(N) algorithms are **not** appliable

Detour of inserting source affects all the supply from latter nodes.

The Basic Insertion Algorithm $(O(N^3))$

1. Enumerate insertion pairs for a length-N route

- $\succ O(N^2)$ cases
- 2. For **each** new route, derive the cost
 - > N + 1 small paths. Calculate and sum up them cost O(N)



33

The DP-Based Insertion Algorithm $(O(N^2))$

1. Enumerate insertion pairs

$$\succ O(N^2)$$
 cases

2. For each new route, derive the cost in O(1) time

Distance-related cost in O(1): studied*

Cost from Demand Supply Balance (DSB): how?

*Yongxin Tong, et al.: A Unified Approach to Route Planning for Shared Mobility. Proc. VLDB Endow. 11(11): 1633-1646 (2018)

The DP-Based Insertion Algorithm $(O(N^2))$

- 1. Dynamically derive a *check-up table* in O(N) *time*
 - Derive the maximum time to delay for each node.
 - Divide it into a discretized space. <u>Increasing DSB</u> is stored with <u>time delay</u>.
- 2. Enumerate insertion pairs
 ➤ O(N²) cases
- 3. For each new route, derive the cost in O(1) time
 - Distance-related cost in O(1): studied*
 - **Cost from DSB:** *check in* O(1) *time according to <u>time delay</u>*
- 4. Return the plan with lowest cost

The DAIF framework

• Assign requests **one-by-one**

• Quickly derive a *lower bound* of cost for each worker

- \succ In O(N) time + only **1** shortest path query.
- Existing work* derive the lower bound for *distance cost*
 - We efficiently derive a lower bound for balance cost
 - based on the property of Demand-Supply-Balance cost

Sort → Calculate exact cost → Prune & insert

- > Derive **exact** cost for each worker ordered by lower bound
- If the lower bound is larger than current minimal cost, safely prune all the rest workers

Outline

- Motivation
- Problem Formulation
- Algorithms
- Evaluations

Experimental Setting

- Road Network
 - NYC (|V|=61,298, |E|=141,372)
- Real Dataset
 - Taxi Trips (2013) in NYC (427,093 trip records)
- Synthetic Dataset
 - Generated according to the distribution of NYC (452,116 trip records)

Experimental Setting

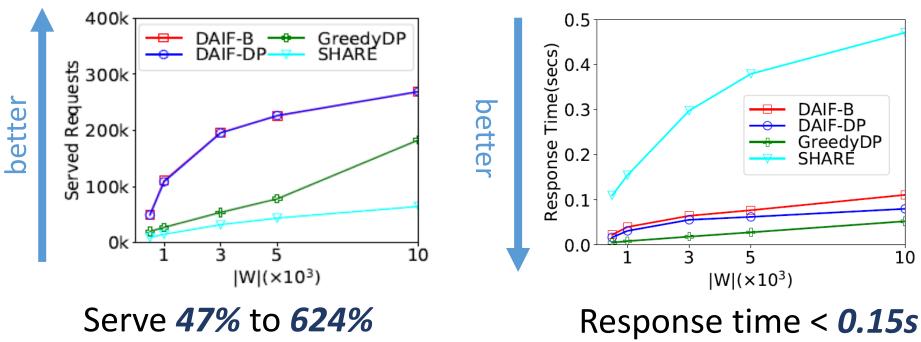
- Compared parameters
 - e_r : the deadline coefficient.
 - *a_i*: the capacity of workers.
 - α, β : the weight for distance/ balance cost.
 - γ: the factor that staying time duration of worker transfer to supply.
 - p_o : the ratio of penalty cost
 - |W|: number of workers
 - g: grid size

Parameters	Settings		
Deadline Coefficient e_r	0.1, 0.2, 0.3 , 0.4, 0.5		
Capacity a_i	2, 3 , 4, 7, 10		
Distance Weight α	1		
Balance Weight β	$\left[\left[p_r^st, rac{p_r^st}{e}, rac{p_r^st}{e^2}, \cdots, rac{p_r^st}{e^5} ight] ight.$		
Supply Coefficient γ	0.0016		
Penalty ratio p_o	30		
Number of workers $ W $	500, 1k, 3k , 5k, 10k		
Grid size g	$1k \times 1k$, $2k \times 2k$, $4k \times 4k$		

Experimental Setting

- Tested Algorithms
 - **GreedyDP***: the state-of-art route planning algorithm using insertion. No demand-related information is used.
 - SHARE[#]: It uses historical information of nodes to choose a route with a higher possibility to pick up passengers along the route
 - **DAIF-B**: our DAIF framework using Basic insertion
 - **DAIF-DP**: our DAIF framework using DP-based insertion

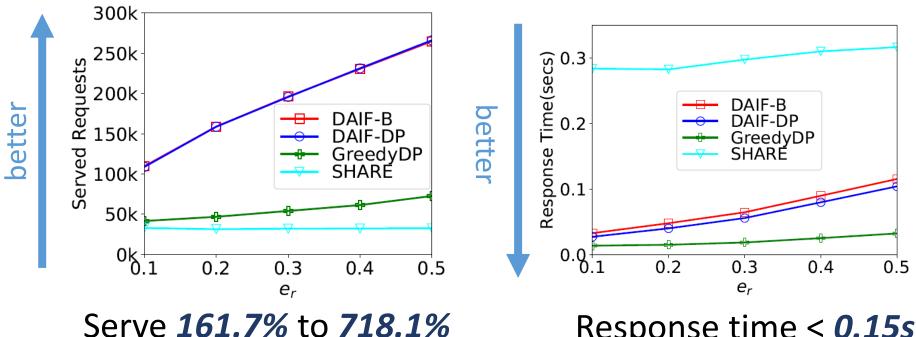
Experimental Results



more requests

Performance of varying number of workers |W|

Experimental Results



more requests

Response time < 0.15s

Performance of varying deadline coefficient e_r

Thank You Q&A

The code and datasets https://github.com/dominatorX/DAIF

