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ABSTRACT
In this paper, we study the privacy-preserving task assignment prob-

lem in spatial crowdsourcing, where the locations of both workers

and tasks, prior to their release to the server, are perturbed with

Geo-Indistinguishability (a differential privacy notion for location-

based systems). Different from the previously studied online setting,

where each task is assigned immediately upon arrival, we target

the batch-based setting, where the server maximizes the number of

successfully assigned tasks after a batch of tasks arrive. To achieve

this goal, we propose the k-Switch solution, which first divides the

workers into small groups based on the perturbed distance between

workers/tasks, and then utilizes Homomorphic Encryption (HE)

based secure computation to enhance the task assignment. Further-

more, we expedite HE-based computation by limiting the size of

the small groups under k . Extensive experiments demonstrate that,

in terms of the number of successfully assigned tasks, the k-Switch
solution improves batch-based baselines by 5.9× and the existing

online solution by 1.74×, with no privacy leak.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures; • Information systems→ Location based
services; Crowdsourcing.
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1 INTRODUCTION
The mass adoption of GPS-equipped smart phones enables indi-

viduals to collaborate, participate, consume and produce valuable

information about the environment and themselves. Spatial crowd-
sourcing (SC) systems (e.g., Foursquare [1] , Gigwalk [2], MediaQ

[13], and gMission [6]) have emerged to support such collabora-

tions by assigning tasks to proper workers. Task assignment is a

core issue in SC systems, asking the workers to move physically to

specified locations to execute the tasks [12, 22].

To enable the SC server to properly assign tasks, in general,

workers need to upload their locations. However, users’ location is

highly sensitive, because it can indicate users’ whereabouts, and

even disclose their private attributes. For example, visiting an ur-

gent care center reveals certain medical conditions [9]. The server,

which receives the locations, is untrusted and can be vulnerable to

attacks. Thus, in previous studies [18, 21], privacy-preserving task

assignment is proposed to enable users (workers/task requesters)

to perturb their locations with Geo-Indistinguishability (Geo-I) [5]

and upload only the perturbed locations. Geo-I is a widely adopted

differential privacy notion [8] for location-based systems, which

defends users’ locations against strong adversaries with any prior

knowledge [9].

In this paper, we study the task assignment problem with users’

perturbed locations under the batch-based setting. That is, the

SC server assigns the tasks batch-by-batch to the workers, with

locations of both workers and tasks perturbed by Geo-I. Although

Geo-I is an existing technique to protect location privacy of users,

directly applying Geo-I to task assignment problem could lead

to poor performance as measured by the number of successfully

assigned tasks, because only the perturbed locations are available as

the problem inputs. To the best of our knowledge, existing works on

spatial crowdsourcing with Geo-I [18, 21] target the online setting

where tasks come on the fly and are processed one by one. Batch-

based task assignment with Geo-I-perturbed locations has not yet

been studied. Directly applying the online assignment methods to

the batch-based setting can result in poor solutions, because online
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solution assigns tasks one by one, and previous assignments can

not be changed when new tasks arrive. An example of the online

solution making sub-optimal assignments is shown in Figure 1.
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𝑤! 𝑡"
𝑅#!

𝑅#"

(a) Online solution

𝑡!𝑤"

𝑤! 𝑡"

(b) Optimal solution

Figure 1: Online solution makes sub-optimal assignment vs. Opti-
mal assignment.

As Fig. 1(a) shows, in the online setting, task t1 arrives first and
would be assigned to workerw1 since they are close to each other.

Note that such a decision is irrevocable in the online setting. Subse-

quently,w1 will no longer be available no matter what future tasks

arrive. When task t2 arrives later, because workerw1 is occupied,

t2 cannot be assigned.w1 is the only worker who can perform t2, as
t2 is outside the reachability range Rw2

of workerw2. In contrast,

when t1 and t2 come in a batch, they can be properly assigned to

w2 andw1, respectively.

No existing research has specifically targeted the batch-based

privacy-preserving task assignment, however, as a matter of fact,

batch-based setting has been widely adopted in the spatial crowd-

sourcing industry. For example, DiDi [3], the leading car-hailing

platform in China, accumulates orders (tasks) per time window,

and jointly dispatches them to drivers (workers) [26, 29]. Figure 2

gives an example of our studied problem in this paper. Fig. 2(a)

shows the true locations of workersw1,w2 and tasks t1, t2.w1 and

w2 have a reachability range Rw1
and Rw2

respectively, denoting

the maximum distance that they are willing to travel. In Fig. 2(b),

the locations are perturbed using Geo-I. Our problem is to assign

tasks to suitable workers to maximize the number of assigned tasks

subjecting to workers’ reachability constraint.
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(a) True locations
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𝑤′!
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(b) Perturbed locations

Figure 2: Our Privacy-preserving Batch-based Task Assignment
(PBTA) problem.

The obfuscated locations bring technical challenges to the task

assignment problem. As shown in Fig. 2(b), if we directly use the

perturbed locations as the true locations to perform the task as-

signment, then task t2 and t1 are assigned to worker w2 and w1

respectively (denoted by the red arrows). However, according to

the true locations, t2 lies outside the range ofw2, and t1 lies outside
the range ofw1. The aforementioned assignment finally has no task

successfully executed. In fact, the optimal assignment should be

assigning t2 to w1 and t1 to w2 (denoted by the green arrows in

Fig. 2(a)), which would finally execute both tasks.

Table 1: Notation.
Symbol Description
w, t,W , T A worker, a task, a set of workers, a set of tasks

w′, t ′ A worker and a task after perturbation

lw , lt True locations for a workerw and a task t
lw′, lt ′ Perturbed locations for a workerw and a task t
Rw Reachable distance for a workerw
d(·) Euclidean distance function

M An assignment (matching) between workers and tasks

M0
A baseline matching obtained by oblivious baseline methods

p, P p is a matched worker/task pair p = (w, t ). P =W ×T is the set of

all possible worker-task pairs.

l = ϵr Privacy parameters

To address the aforementioned challenge, we propose an innova-

tive solution k-Switch. It first employs probabilistic inference over

the perturbed locations to obtain an initial assignment, then uses

an encryption-based secure computation method to improve the

assignment quality significantly without compromising privacy. To

address the efficiency issue of existing Homomorphic Encryption

techniques, it divides workers into small groups of size k , and apply
HE within the small groups only. Using the example in Fig. 2, k-
Switch uses perturbed locations to obtain a preliminary assignment

first, and then allows workerw1 andw2 to use secure communica-

tion to obtain the true distance from the tasks and switch tasks in

order to obtain a better assignment.

To summarize, we make the following contributions in this paper.

• We propose k-Switch, an innovative solution to address the chal-

lenging Privacy-preserving Batch-based Task Assignment (PBTA)

problem. To the best of our knowledge, this is the first work

targeting the batch-based setting of the privacy-preserving task

assignment problem. The PBTA problem is defined in Section 3

together with two proposed oblivious baselines.

• On top of the oblivious baselines, we propose thek-Switchmethod,

which combines probabilistic analysis and encryption-based se-

cure computation techniques to achieve significant assignment

quality improvements without compromising privacy. It miti-

gates the efficiency issue of previous encryption-based secure

computation techniques by doing the computation within the

small groups. We introduce k-Switch in Section 4.

• We conduct extensive experiments to validate the efficiency and

effectiveness of the proposed algorithms. In terms of the number

of successfully assigned tasks, the k-switch method assigns up to

5.9× more tasks than other proposed baselines, and assigns up to

1.74× more tasks than the existing online solution. The results

are shown in Section 5.

In addition, we cover the preliminaries and necessary back-

ground in Sec. 2, compare with other related works in Sec. 6 and

conclude the paper in Sec. 7. The notations used in this paper are

summarized in Table 1.

2 BACKGROUND
2.1 Task assignments in spatial crowdsourcing
We introduce the task assignment problem, especially the batch-

based setting, which is the primary focus of this paper.

Definition 2.1. (Task assignment problem in spatial crowdsourc-

ing [22, 27]) Given a set of workersW and a set of tasks T , the
task assignment problem returns an assignment (matching) M of

tasks to workers M = {(w, t)|w ∈ W , t ∈ T } such that for some

given objective function Ψ(·), Ψ(M) is optimized (maximized or
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minimized):

Ψ(M) =
∑

(w,t )∈M

ψ (w, t),

Following the setting in [21], we have the following spatial con-

straint and objective function. Each worker is willing to travel at

most Rw ∈ R, i.e., for each pair (w, t) ∈ M , d(lw , lt ) ≤ Rw . Each
successfully assigned task carries a unit utility. The task assignment

problem maximizes Ψ(M) = |M |, the size of the matching.

In this paper, we focus on the batch-based setting (also referred

as offline or static setting): the locations of all workers and tasks are
known at the beginning. Previous works [18, 21] mainly focus on

the privacy preservation for the online setting: tasks arrive one by

one, and each task needs to be assigned immediately upon arrival

and cannot be re-assigned to other workers no matter what future

tasks arrive.

2.2 Geo-indistinguishability
Geo-indistinguishability (Geo-I) [5] extends the traditional andwell-

adopted privacy notion – differential privacy [8] to location-based

systems.

Definition 2.2. (Geo-I) For all true locations x ,x ′, a privacy pa-

rameter ϵ , a mechanismM satisfies ϵ-Geo-I iff:

dρ (M(x),M(x ′)) ≤ ϵd(x ,x ′),

where d(x ,x ′) is the Euclidean distance between x and x ′ while
dρ (M(x),M(x ′)) is the multiplicative distance between two distri-

butions M(x) and M(x ′). M(x) and M(x ′) are the distributions of
perturbed locations based on the original location x and x ′ respec-
tively.

One particular mechanism satisfying Geo-I is drawing random

noise from the planar Laplace distribution [5]. Given the privacy

parameter ϵ ∈ R+, the actual location x0 ∈ R2, the probability

density function of a noisy location x ∈ R2 is:

Dϵ (x0)(x) =
ϵ2

2π
e−ϵd (x0,x ), (1)

where
ϵ 2
2π is the normalization factor.

3 PROBLEM DEFINITION
We formally define the Privacy-preserving Batch-based TaskAssign-

ment (PBTA) problem in this section and introduce our proposed

oblivious baselines.

3.1 PBTA problem
Definition 3.1. (Privacy-preserving Batch-based Task Assign-

ment (PBTA) problem) Given a set of workers W and a set of

tasks T , the perturbed location lt ′ for each task t , the perturbed
location lw ′ for each task w , the reachable distance Rw for each

worker w , the Euclidean distance function d(·), the PBTA prob-

lem is to return an assignment (matching) M of tasks to workers

M = {(w, t)|w ∈W , t ∈ T ,d(lw , lt ) ≤ Rw } such that the following

objective function is maximized:

Ψ(M) = |M |.

Note that in the definition above, only the perturbed locations

lw ′ , lt ′ are available in the input. On the other hand, for the objective

we are maximizing, each pair in the matching M needs to satisfy

the spatial constraint w.r.t. the true locations lw , lt . We have shown

a simple example in Sec. 1 (Figure 2) to illustrate the problem.

In our setting, The perturbed locations of both workers lw ′ and

tasks lt ′ are obtained by applying Geo-I with the privacy level

l = ϵr . The privacy level is the same for all workers and tasks. Also,

one workerw takes at most one task, and each task t only needs to

be matched to one worker. The setting follows [21].

3.2 Privacy model
3.2.1 System model. We follow the system model assumptions of

[21]. We have three parties in our system: the server, the workers,

and the task requesters (short as tasks hereafter).
Because the server is untrusted, when workers and tasks submit

their locations, they only send the perturbed locations. The server

is untrusted, as centralized servers are usually vulnerable to attacks,

suffering massive data leak. For example, Facebook security breach

exposes 50 million users’ data [11].

The task assignment is done at the server. After workers and

tasks submit perturbed locations to the server, the server runs its

task assignment algorithm, obtains an assignmentM , and notifies

workers and tasks about their assignments.

3.2.2 Adversary model. Similar to the setting in [21], we adopt a

semi-honest model, which assumes that all participating parties

(the workers, the task requesters, and the server) are curious but

not malicious.

They are curious about the private and sensitive information

about other parties. So, we try to prevent sensitive information of

any party from being shared with other parties. On the other hand,

they are not malicious and follow system protocols. They do not

collude with each other to gain extra information.

3.3 Baselines
We propose a simple baseline solution Oblivious-M, which directly

uses the perturbed (observed) locations to obtain a matching be-

tween workers and tasks. Then, we incorporate probabilistic analy-

sis of reachability between workers and tasks, and propose another

solution Oblivious-RR, which is based on randomized rounding.

The term ‘Oblivious’ indicates that both of these methods only

access the perturbed locations, and true locations have never been

accessed and disclosed in any way when running these methods.

3.3.1 Oblivious-M. The Oblivious-M method is the simplest base-

line solution we propose. It builds the reachability graph from

the perturbed locations, and runs the Max-Flow algorithm (e.g.,

Ford-Fulkerson algorithm [7]) to obtain a maximized cardinality

matching.

We use a running example in Figure 3 (modified from Fig. 3 of

[21]) to demonstrate the basic steps of Oblivious-M. In the PBTA

problem, we are given the observed (perturbed) locations of workers

and tasks (Fig. 3(a)). In Oblivious-M method, directly using the

observed locations, if a task t is within the range Rw of workerw ,

we create an edge betweenw and t indicating they are reachable.

In this way, we build the reachability graph as shown in Fig. 3(b).

The reachability graph is a bipartite graph with all workers on

one side and tasks on the other side, and all edges (indicating reach-

ability) in between. Next, we simply add superficial source/sink
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(a) Inputs
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(b) Reachability graph

Figure 3: A running example of PBTA problem

nodes, edges with capacity 1 between the source node and every

worker, and edges with capacity 1 between the sink node and ev-

ery task to build the flow network (see Fig. 4). It is shown that

the maximum cardinality matching from the reachability graph

corresponds to the Max-Flow on the constructed flow network. So,

we run standard Max-Flow algorithms (such as Ford-Fulkerson [7])

on the constructed flow network, and return all saturated edges

(w, t) (with flow value 1 on the edges) as the outputM . In our run-

ning example, the maximum flow obtained is shown in Fig. 4. The

returned matching isM = {(w1, t2), (w2, t1), (w3, t3)}.

𝑤′! 𝑡′!

𝑤′" 𝑡′"

𝑤′# 𝑡′#

source sink

1/1

1/1

1/1

0/1

1/1

1/1

0/1

1/1

1/1

1/1

1/1

Figure 4: The maximum flow obtained on our running example.

When wemeasure the size of the matchingM , we need to use the

true locations to check whether a task is indeed within the reach of

the assigned worker. The true locations and the reachability graphs

built from the true locations are shown in Figure 5. In our returned

matching M based only on the perturbed locations, t2 and t1 are
indeed within the range ofw1 andw2 respectively. However, t3 lies
outside the range ofw3. Thus, the size of the matching we find is 2

(instead of 3).

𝑡!
𝑤"

𝑤#

𝑡#

𝑡"
𝑤!

𝑤" 𝑡"

𝑤! 𝑡!

𝑤# 𝑡#
Figure 5: The true locations of our running example.

For the time complexity, the fattest-path first implementation

of Ford-Fulkerson is O(|E | · opt), where E denotes edges for the

flow network, and opt is the optimal value of the flow. We let

n = max(|W |, |T |), the larger value of the sizes of the workers and
the tasks. In our constructed flow network, assuming all tasks are

connected with all workers in the worst case, |E | = O(n2). As for
opt , the optimal flow value is bounded by n. Overall, Oblivious-M
has complexity of O(|E | · opt) → O(n2 · n) → O(n3).

3.3.2 Oblivious-RR. When we construct the reachability graph

in the simplest baseline solution Oblivious-M, an edge between a

workerw and a task t is either 1 (if perturbed locations show that

𝑤′! 𝑡′!

𝑤′" 𝑡′"

𝑤′# 𝑡′#

0.1/0.8

0.4/0.6
0.48/0.48

0.9/0.9

0.1/0.15

0.6/0.6

0.4/0.6

(a) The maximum weight flow

𝑤′! 𝑡′!

𝑤′" 𝑡′"

𝑤′# 𝑡′#

0.1/0.8

0.4/0.6
0.48/0.48

0.9/0.9

0.1/0.15

0.6/0.6

0.4/0.6

(b) The matching

Figure 6: The maximum weight flow and the rounded matching.

t is reachable from w) or 0 (when t is not reachable from w). We

make improvements in this step by adopting probabilistic analysis.

Intuitively, based on perturbed locations, some worker-task pairs

should have higher likelihood that they are indeed reachable, and

on the other hand, some other worker-task pairs should have lower

likelihood of being reachable.

We continue with the running example in Figure 3 to further

explain the intuition of the probabilistic analysis. If we focus on

w ′
1
, and compare two tasks t ′

1
and t ′

2
, then based on the perturbed

locations, t ′
1
looks much closer tow ′

1
compared to t ′

2
(the distance

betweenw ′
1
to t ′

1
is almost 1/2 of t ′

2
, as t ′

2
is almost at the periphery

of the reachable circle). Oblivious-RR incorporates the probabilistic

analysis and gives each edge in the reachability graph a fractional

weight ranging from 0 to 1, instead of a binary 0/1 value. Based the

fractional flow network, we design randomized techniques to obtain

a matching. Due to space limit, we leave the details of Oblivious-

RR in the full version [14]. Here, we show a particular matching

obtained after the randomized rounding in Fig. 6(b), which assigns

the same amount of tasks as the optimal matching.

The time complexity of Oblivious-RR is the same with Oblivious-

M, as it only adds a post randomized rounding which takes O(n2)
time, with n = max(|W |, |T |). Overall, Oblivious-RR runs in O(n3)
time.

4 K-SWITCH
We present the main contribution of this paper – our proposed

k-Switch in this section. We introduce the basic idea of the entire

solution first, and then present the technical details in each step of

the method.

4.1 Overview
k-Switch method is a novel task swapping method, which uses

coordination between workers to achieve utility gain. It trades off

modest system overhead with secure computation between workers

to increase the number of successfully assigned tasks, without

privacy leak.

Figure 7 shows the basic idea of the method. k-Switch starts

with a baseline matching obtained by our proposed Oblivious base-

lines, and then makes an improvement on the matching with the

following steps:

Step 1) Grouping (Sec. 4.3): carefully groups workers into groups

of size k , where k is a small number selected by the server.

Step 2) k-HE (Sec. 4.4): for each k-group, the workers and the

task inside the group uses secure computation to calculate the true

distance based on encrypted true locations. Then, workers inside
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k-Switch
k-group 𝑔! (k=2)

k-group 𝑔" (k=2)

𝑘-HE protocol

𝑘-HE protocol

Oblivious-M/RR

Figure 7: k-Switch

the k-group swap tasks if such swapping achieves utility gain, i.e.,

increase the number of successfully assigned tasks.

Step 3) λ-Opting (Sec. 4.5): server iterates Step 1) and Step 2),

each time grouping workers into small k-groups and letting them

use k-HE to communicate inside the group to achieve utility gain.

We introduce the details of each step in the following sections.

We show Step 1) Grouping requires solving an NP-hard problem

when k ≥ 3, and our solution includes an efficient greedy grouping

algorithm.

4.2 Baseline matching
k-Switch starts with a baseline matching M0 obtained by either

Oblivious-M or Oblivious-RR proposed in Section 3. According

to the experiment results, we find that Oblivious-M outperforms

Oblivious-RR in terms of the number of successfully assigned tasks,

so we use it in k-Switch. In the future, if other better Oblivious

matching methods are proposed, they could also be incorporated

to find the baseline matchingM0.

For clarify of presentation, we formally define the baselinematch-

ingM0.

Definition 4.1. (Baseline matching) For a PBTA problem as de-

fined in Def. 3.1, we use Oblivious-M to find a baseline matching

M0:

M0 = {(w, t)|w ∈W , t ∈ T }
Again, to illustrate our idea clearly, we continue with the running

example in Figure 4. Using Oblivious-M, we obtain a baseline match-

ingM0 = {(w1, t2), (w2, t1), (w3, t3)}. At this stage, only perturbed

locations shown in Figure 3 is observable to the server.

As we illustrate previously, this baseline matching could be

sub-optimal when we use true locations to verify the reachabil-

ity constraints of the workers. In the next step Grouping, we divide

workers into small groups of size k for further optimization.

4.3 Grouping
4.3.1 Definitions and k-Grouping problem. The purpose of group-
ing is to group nearby workers and tasks into small groups, such

that there are good chances that swapping tasks inside the small

group could lead to improvement of the number of successfully

assigned tasks (the utility of the matching). The small groups are

referred as k-groups. Next, we formally define the k-group and the

k-Grouping problem.

For clarify of presentation, we use P =W ×T to denote the set of

all possible matched worker/task pairs. For example, in the baseline

matchingM0 in our running example, we have three matched pairs,

p1 = (w1, t2) ∈ P . p2 = (w2, t1) ∈ P , p3 = (w3, t3) ∈ P . The baseline
matching could also be denoted asM0 = {p = (w, t)|w ∈W , t ∈ T }.

Definition 4.2. (k-group) A k-group is a set of k matched worker-

task pairs in the baseline matching. A k-group д contains k different

workers and their matched tasks:

д = {p = (w, t)|p ∈ M0} s .t . |д | = k .

Back to the running example, if k = 2, then a k-group becomes a

2-group which contains 2 matched pairs. For example, д1 = (p1,p2)
is a possible 2-group, д2 = (p1,p3) is another possible 2-group. For
2-group д1, it contains worker from the matched pair p1, which is

w1. It also contains the worker from the matched pair p2, which is

w2. The 2-group д1 also contains the tasks that are matched with

the workers, which are task t2 in pair p1 and t1 in pair p2.
The purpose of grouping is to group nearby workers and tasks

together such that there are good opportunities that swapping tasks

between them leads to better assignment. Some k-groups are better
than the others. To evaluate the quality of each k-group, we propose
a simple yet effective measurements, verified by experiments, called

obfuscation-score (short as OScore). We first define the OScore on

a 2-group and then extend it to k-group.

Definition 4.3. (Obfuscation-score) Given a 2-group д = {p1,p2},
we define the obfuscation-score (or OScore) of the 2-group as:

OScore(д) = d(l ′p1 .w , l
′
p2 .w ) + d(l ′p1 .t , l

′
p2 .t ).

Here p1 and p2 are the two matched pairs inside the 2-group д.
Notation p.w and p.t respectively denote the worker and the task

from the matched pair.

The OScore definition is straightforward, it measures two dis-

tance: i) the distance between the perturbed locations of the two

workers in the 2-group; and ii) the distance between the perturbed

locations of the two tasks that are assigned to the two workers

in the baseline matching M0. Then OScore is the sum of the two

distance.

Intuitively, if both workers and their assigned tasks appear to

be close to each other, they are spatially clustered, and should be

grouped together in a k-group. Other measures more sophisticated

than OScore could be defined and used, however we adopt this

OScore as it is very efficient to compute and yet effective, as to

be demonstrated in our experiments. Next, we extend the OScore

measurement from 2-group to k-group.

Definition 4.4. (OScore of ak-group) For ak-groupд = {p1, . . . ,pk },
we define its OScore as:

OScore(д) =
∑

1≤i<j≤k

OScore({pi ,pj }).

For a k-group д, its OScore is the sum of the OScore of д’s subsets
of size 2. We abuse notations to use the same OScore to refer to

different definitions for 2-group and k-group when k ≥ 3.

Before we introduce the k-grouping problem, we define the term

k-division as a collection of k-groups that we select out of the

baseline matchingM0.

Definition 4.5. (k-division) Given a baseline matching M0 =

{p |p ∈ P}, a k-divisionD = {д1, . . . ,дd } is a set of non-overlapping
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k-groups of M0, where the size of the k-division is d = ⌈|M0 |/k⌉.
We define the score of a k-division as:

score(D) =
∑

1≤i≤d

OScore(дi ).

Remark: i) for 1 ≤ i ≤ d , |дi | = k except for at most one group,

when |M0 | is not a multiple of k ; ii) k-groups are non-overlapping
(disjoint) when workers from any k-group is different from any

other k-groups.

The k-division is a collection of k-groups from the baseline

matchings. It divides workers into small k-groups, each with exact

size k , except for at most one group. The exception happens when

the total number of workers is not a multiple of k , and the excep-

tional group has a size in the range of [0,k − 1]. The score of the

k-division is defined as the sum of OScore of all its k-groups.
Next we are ready to formally define the k-Grouping problem. It

divides the workers in the baseline matching M0 into small groups

to create a k-division as defined in Def. 4.5, and minimizes the score

of the k-division.

Definition 4.6. (k-Grouping problem (KGP)) Given a matching

M0 = {p |p ∈ P}, the k-grouping problem returns a k-division D∗

with minimal score. Formally, for any other k-division D:

score(D∗) ≤ score(D).

Next, we provide theoretical analysis on the hardness ofk-Grouping
problem (KGP). We show for k = 2, KGP is polynomial-time solv-

able, while for k ≥ 3, it is hard to approximate.

4.3.2 Algorithms for k = 2.

Theorem 4.7. When k = 2, KGP is in P class, solvable in polyno-
mial time.

Proof. The overall idea of the proof is that, when k = 2, the KGP

is equiv. to finding the maximum weight matching on a general

graph. We construct a graphMG from the baseline matchingM0 =

{p |p ∈ P} as follows. For each matched pair p ∈ P , we create a

vertex p and add it to graphMG . We create an edge between any

two vertices p. It is a complete graph. We define the weight of the

edges as follows. For two vertices pi ∈ M0 and pj ∈ M0, we set the

edge weight w(pi ,pj ) = OScore({pi ,pj }), where OScore({pi ,pj })
is defined in Def. 4.3.

We could then show that the maximum weight matching onMG

corresponds to the optimal solution to the KGP when k = 2. We

defer the details of the proof to the full report [14]. □

Theorem 4.8. When k = 2, KGP is solvable with time complexity
O(|M0 |

2.37).

Proof. For themaximumweight matching problem on a general

graph, it is shown that it is among the hardest problem that could

be solved in polynomial time, with O(|V |3) time complexity [10],

where V denotes the vertex set of the graph. In our setting, |V | =

|M0 |, the size of the baseline matching.

In our setting, as the constructed graphMG is a complete graph,

and convertible to bipartite graph via a simple graph transformation
method (please refer to the appendix [14]). There exists matrix mul-

tiplication algorithms on the transformed bipartite graph to obtain

the maximum weight matching with time complexity O(|V ′ |2.37).

Algorithm 1: Greedy-Grouping
Input: A baseline matchingM0. Perturbed locations lw ′ and

lt ′ for eachw ∈W and t ∈ T .
Output: A k-division D.

1 Initialize a heap h, an empty set D

2 foreach p1 ∈ M0 do
3 foreach p2 ∈ M0 do
4 if p1.w , p2.w then
5 oscore:= d(l ′p1 .w , l

′
p2 .w ) + d(l ′p1 .t , l

′
p2 .t )

6 h.insert({p1,p2}, oscore)

7 d := ⌈|M0 |/k⌉ // Calculate how many k-groups

8 for i := 0; i < d ; i = i + 1 do
9 д := {}

10 while д.size() < k − 1 do
11 p1,p2 := h.pop()

12 д.Insert(p1, p2)

13 Mark p1.w or p2.w as used

14 D.Insert(д)

15 return D

Because the graph transformation doubles the number of vertices

of the original graphMG , we have |V
′ | = 2 ∗ |V | = 2|M0 |. Overall,

KGP problem is solvable in O(|V ′ |2.37) → O(22.37 ∗ |V |2.37) →

O(|M0 |
2.37). If we let n = max(|W |, |T |), because |M0 | is bounded

by n, then KGP is solvable in O(n2.37). □

4.3.3 Algorithms for k ≥ 3.

Theorem 4.9. When k ≥ 3, KGP has no polynomial time ap-
proximation algorithm with finite approximation ratio unless P=NP.

Proof. We show a polynomial reduction of the Perfectly Bal-
anced Graph Partition (PBGP) problem to the KGP. Because PBGP

has no polynomial approximation algorithm with finite approxima-

tion ratio unless P=NP [4], our KGP has the same hardness.

We review PBGP: given a graphG = (V ,E), with weightw(e) on
each edge e . For an integer p ≥ 2, a p-partition is p disjoint subsets

with equal sizes: V = V1 ∪ · · · ∪ Vp . We assume |V | is a multiple

of p here, so |V1 | = · · · |Vp | = |V |/p. The decision version of PBGP

is that given a positive integerW , is there a p-partition such that

for the cross edges set E ′ ⊂ E, which have two endpoints in the

two different sets Vi , i.e., E
′ = {(vi ,vj ) ∈ E |vi ∈ Vi ,vj ∈ Vj , i , j},

the sum of the weights of edges in E ′ is less or equal to the given

integerW , i.e.,

∑
e ∈E′ w(e) ≤W ?

Please refer to the full report [14] for the details of the proof.

Because we could show that PBGP ≤p KGP, and since PGBP has

no polynomial time approximation algorithm with finite approxi-

mation factor unless P=NP [4], KGP has the same hardness. □
Because of the intractability of KGP, we propose an efficient

greedy method to find a k-division. The greedy algorithm packs
k-group one by one, each time starting with an empty set, and

keeps adding a new 2-group {pi ,pj } with smallest OScore to the

current k-group. If k is an odd number, it randomly picks the last

matched pair p. The detailed steps is shown in Alg. 1.

At Line 6, the algorithm uses a heap storing all combinations of

pairs in the baseline matching {pi ,pj } with its OScore as the sorted
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Figure 8: k-HE protocol (the case for k = 4)

key. Every time we could pop the pair {pi ,pj } with the smallest

OScore and add them to the current k-group. After each k-group is

formed, we continue to the next one until a k-division is obtained

and returned. Line 10-13 greedily add two matched pairs to the

current k-groupд, until its size reaches k . In total, we formd groups,

as calculated at Line 7. We omit some details for checking used

workers and randomly picking the last item (see full version [14]).

The time complexity of Alg. 1 is dominated by the heap construc-

tion, which takes O(e log e), where e is the total number of elements

inserted to the heap. We know e is all the combinations of matched

pairs, as shown at Line 2-3, so e = O(n2), where n = max(|W |, |T |),
the size of the baseline matching. In conclusion, for Alg. 1 has an

O(n2 logn2) → O(n2 logn) time complexity.

4.4 k-HE protocol
The purpose of the previous step Grouping is to divide all work-

ers into small groups of size k . In this section, we introduce how

workers inside each small k-group utilize secure computation in

parallel to increase the number of successfully assigned tasks via

task swapping.

Our k-HE protocol runs in the small group of size k . The secure
computation is based on the Paillier Crypto-system [16] in Homo-

morphic Encryption (HE), which allows Homomorphic Addition

and Homomorphic Multiplication. Similar to the global task assign-

ment setting in HESI framework [15], we also use HE for secure

distance calculation. In contrast, our protocol is restricted to small

size k (ranging from 2 to 8). We allow workers and tasks inside the

small group to communicate the encrypted true locations with one

another, and if the number of successfully assigned tasks could be

improved based on their true locations, then workers swap tasks

between themselves.

Figure 8 gives an illustration of the protocol. Two entities (either

worker or task) out of the k-group are randomly elected and serve

as the proxy servers Pa and Pb . Then, we perform secure distance

calculation between each pair of workers and tasks following the

major steps of HESI [15] (details deferred to our full report [14]).

As for the time complexity, two proxy servers enumerate all combi-

nations of worker-task pairs in the k-group and compute the true

distance, with O(
(k
2

)
) → O(k2) time. Then, Pb runs a matching

algorithm w.r.t. the true distances, with O(k3) time using the max-

flow algorithm similar to the Oblivious-M baseline (Sec. 3.3.1). The

overall time complexity is O(
(k
2

)
+ k3) → O(k3).

4.5 λ-Opting
The previous section describes how small k-groups execute k-HE
protocol in parallel and workers swap tasks if task swapping in-

creases the number of successfully assigned tasks within the group.

The last phase of k-Switch is λ-Opting, which iterates Grouping

and k-HE protocol for λ rounds. It also stops if no utility gain is

obtained at the current round. λ is a system parameter controlling

the trade-off between utility gain and system overhead.

𝑡′!

𝑤′"

𝑤′#

𝑡′#

𝑡′"

𝑤′!

𝑡′!

𝑤′"
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𝑡′#

𝑡′"

𝑤′!

𝑘-HE 𝜆-Opting

Figure 9: λ-Opting.
Each round of λ-Opting executes the grouping and the k-HE

protocol, taking O(k3 + n2 logn) time. The time complexity of k-
Switch is thus O(λk3 + λn2 logn), where n = max(|W |, |T |).

5 EXPERIMENTAL STUDY
We conduct extensive experiments on both the real-world dataset

and the synthetic dataset to validate the effectiveness and efficiency

of our proposed k-Switch method.

With respect to the effectiveness, as measured by the number of

successfully assigned tasks, experiments show thatk-Switch assigns
up to 5.9×more tasks than other batch-based baselines, and assigns

up to 1.74×more tasks than the competing online method SCGuard.

In terms of efficiency, as measured by the running time, our method

is efficient, finishing within 1.5 minutes on datasets of moderate

sizes (500 workers and 500 tasks). While being slightly slower than

other methods (slower than SCGuard by about a constant factor of

2), k-Switch is considered cost-effective because it trades off minor

system overhead with considerable utility gain.

5.1 Experimental setup
5.1.1 Datasets. We conduct the experiments on both the real-

world and the synthetic dataset. The real-world dataset is the

taxi dataset from Didi Chuxing [26]. For the synthetic dataset,

we randomly sample workers and tasks’ locations from the range

[0, 8000] × [0, 8000].

5.1.2 Baselines. The baselines we test include the two baseline

solutions we propose: Oblivious-M (short as OM, introduced in

Sec. 3.3.1) and Oblivious-RR (ORR, Sec. 3.3.2). In addition, we

test SCGuard (SCG, [21]), an online method allowing each newly

arrived task to interactively check several other workers to see

whether the task could be assigned.

5.1.3 Metrics and control variables. Control variables: Number of

workersw ∈ [100, 200, 500, 1000]. Number of tasks t ∈ [100, 200,
500, 1000]. System parameter k ∈ [2, 4, 6, 8], λ ∈ [5, 10, 20]. Privacy
requirement ϵ ∈ [0.4, 1.25, 2.5]. We set r = 1000m as constant.

Varying ϵ corresponds to varying Geo-I privacy level l = ϵr ∈

[400, 1250, 2500]. Default parameters are in boldface.

Metrics. We focus on 1) effectiveness (utility), measured by the

number of tasks assigned, and 2) efficiency, measured by running

time in seconds.
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Figure 10: Number of tasks assigned for different methods, over
different privacy levels, 100 workers vs. 100 tasks, k = 2, λ = 20.

191

496

999

22 60

136

25 65
13284

224

492

111

320

638

0

200

400

600

800

1000

1200

w,t=200 w,t=500 w,t=1000

N
um

be
r 

of
  t

as
ks

Data size

OPT OM
ORR SCG
KS

(a) Real-world dataset

192

500

1,000

16 50
113

27 51 10638
148

480

102

302

612

0

200

400

600

800

1000

1200

w,t=200 w,t=500 w,t=1000

N
um

be
r 

of
  t

as
ks

Data size

OPT OM
ORR SCG
KS
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Figure 11: Number of tasks assigned, on different input sizes (200-
1000), ϵ = 0.4, k = 2, λ = 20.

System configuration. The experiments are performed on a Mac-

Book Pro with 1.4GHz Quad-Core Intel Core i5 and 16GB 2133MHz

LPDDR3 memory, running MacOS 11.0. The methods were imple-

mented in Python.

5.2 Experimental results
5.2.1 Effectiveness. Overview: k-Switch (short as KS in the fig-

ures) outperforms other baselines by significant margins, over dif-

ferent privacy levels (Fig. 10), across datasets of different sizes

(Fig. 11). For a stricter privacy parameter ϵ = 0.4 on the taxi dataset

(shown in Fig. 10(a)), k-Switch achieves 5.9× improvement over

baseline Oblivious-M, and 1.74× improvement over the competing

online method SCGuard.

Details of results. Fig. 10 shows the number of successfully as-

signed tasks obtained by different methods, over different privacy

levels on a dataset of 100 workers vs. 100 tasks. We compare the

optimal matching with the Oblivious baseline methods. The optimal

matching (OPT) is obtained by using the ground-truth locations,

which are not available in the inputs to our PBTA problem. The

Oblivious baselines OM and ORR are using only the perturbed

locations. At privacy level ϵ = 0.4 (shown in Fig. 10(a)), the gap be-

tween OPT and OM is 82. The OPT is about 11 times larger than OM.

This validates the motivation of our research: privacy-preserving

techniques perturb the locations of workers and tasks, and directly

assigning tasks based on perturbed locations is erroneous and prone

to sub-optimal assignment. The gap is also observable on the syn-

thetic dataset, shown in Fig. 10(b).

Varying privacy levels: k-Switch outperforms all other methods

on different privacy levels, assigning 47 tasks for ϵ = 0.4 on taxi

data (shown in Fig. 10(a)), achieving 5.9× improvement over OM,

which assigns 8 tasks. It also achieves 1.74× improvement over the

SCGuard, which assigns 27 tasks. When ϵ gets larger, the privacy
requirement gets less strict, the gap between the OPT and the obliv-

ious OM and ORR gets smaller. For ϵ = 2.5, OM assigns 74 tasks,
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Figure 12: Effect of parameter k for k-Switch method on the num-
ber of tasks assigned.
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Figure 13: Running time (seconds) for different methods, over dif-
ferent privacy levels, 100 workers vs. 100 tasks, k = 2.

much closer to the 91 tasks from the OPT solution, as compared

to a stricter ϵ . Nevertheless, k-Switch delivers strong performance,

and assigns 87 tasks, which is close to the OPT.

Varying data size: Fig. 11 shows the number of successfully

assigned tasks of different methods, on datasets of different sizes.

First, as the number of worker and task increases from 200 to

1000, the OPT result increases from 191 to 999 on taxi dataset

(Fig. 11(a)), and 192 to 1000 on the synthetic dataset (Fig. 11(b)). The

gap between OPT and OM is consistently large. For the taxi dataset

(Fig. 11(a)), the OPT/OM ratio is 191/22 = 8.7 for w, t = 200 and

999/136 = 7.3 forw, t = 1000, respectively. k-Switch significantly

improves over the baseline OM and the online SCGuard method.

It achieves 5.05× improvement over OM for w, t = 200, 5.33× for

w, t = 500, and 5.64× forw, t = 1000. As for the comparison with

SCGuard, k-Switch obtains 1.32×, 1.43×, and 1.30× improvement

for w, t = 200, 500, and 1000 respectively. The same behavior is

observed on the synthetic dataset (Fig. 11(b)).

Varying parameter k : Fig. 12 shows the number of success-

fully assigned tasks, over different k , on datasets of different sizes

(Fig. 12(a)) and over different privacy requirements ((Fig. 12(b))).

As Fig. 12(a) shows, when k increases, the number of successfully

assigned tasks increases. For the smallest data size, the utility in-

creases from 47 to 75 tasks, as k increases from 2 to 8. On the other

hand, on the data sizew, t = 100, when we vary privacy parameters,

the effect of k is not as significant (Fig. 12(b)).

Varying parameter λ: Due to space limit, we defer the results

about varying the system parameter λ to the full version [14]. The

results verify that λ achieves a tradeoff between the utility and

efficiency for k-Switch, which is consistent with our system design.

5.2.2 Efficiency. Overview.Whilewe expectk-Switch to be slower
than other methods as the design trades off moderate system over-

head with significant utility gain, experimental results show it is

only slightly slower than other methods. On our default setting
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Figure 14: Running time (seconds) on different input sizes.
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Figure 15: Running time (seconds) of k-Switch for different k .

(Fig. 13), 100 workers vs. 100 tasks, it takes only around 2 seconds

to run on a laptop machine. When tested on larger sizes dataset

(Fig. 14), k-Switch shows stable efficient running time, a small

constant factor slower than the competing SCGuard. Experiments

verify our time complexity analysis of the methods.

Details of results. Fig. 13 shows the running time of different

methods (in seconds), over different privacy parameters, on datasets

of 100 workers vs. 100 tasks. k-Switch obtains around 2 seconds

running time on the taxi dataset (Fig. 14(a)), and strictly less than

2 seconds on the synthetic dataset (Fig. 14(b)). The running time

is consistent across all privacy levels. When compared with the

competing online method SCGuard, k-Switch is slightly slower,

with a constant factor of 2.

Varying data size: We look at the asymptotic growth of the

running time across different sizes of datasets in Fig. 14. First, the

results verify the quadratic time complexity (O(λk3 + λn2 logn),
see Sec. 4.5) in terms of n, where n = max(|W |, |T |), the input

size. When the input size doubles, from w = 500 to w = 1000,

the running time increases about 4 times, from 82.4 seconds to

324 seconds on the taxi dataset (Fig. 14(a)). When compared with

SCGuard, SCGuard has the same quadratic time complexity, so it

also increases about 4 times, from 30.02 to 120.4 seconds when

w = 500 increases tow = 1000. k-Switch is about a 2 times constant

factor slower than SCGuard. The same trend is observed on the

synthetic dataset (Fig. 14(b)).

Varying parameter k and ϵ : Fig. 15 shows the running time of

k-Switch, over different k , on datasets of different sizes (Fig. 15(a))

and for different privacy parameters (Fig. 15(b)). As expected, when

the data size is fixed, the running time of k-Switch is larger when

k is increased, while the increase is not significant. When we vary

the privacy parameter ϵ , the running time of k-Switch is stable,

across different values of k (Fig. 15(b)).

6 RELATEDWORK
For privacy-preserving task assignment in spatial crowdsourcing,

we have discussed the most directly related online methods [18, 21]

in Sec. 1. Here, we include more related works in a broader context

of privacy-preserving spatial crowdsourcing.

Different protectionmethods. Encryption-based techniques have
been used to compute the exact assignment between workers and

tasks [15]. The computational cost of such pure encryption-based

techniques is high and prohibitive for real-world applications. Other

privacy protection technique, such as cloaking, is used to protect

locations of workers [17], but cloaking is considered as a weaker

privacy-preserving technique than Geo-I (Sec. 2.2), because its as-

sumption on adversaries’ prior knowledge. There are other related

works using Geo-I as the privacy standard [19, 20]. However we

adopt a stricter privacy model that the server is untrusted from

all workers and tasks, and locations of both parties need to be per-

turbed before released to any other parties. Similar to our work,

the batch-based (offline) setting has also been considered in [23].

However only the workers are protected.

Other crowdsourcing setting. There are other related works in

the spatial crowdsourcing spectrum [24, 25, 28]. Different from the

task assignment problem, data publishing has been considered in

[25]. The truthful rather than privacy-preserving task assignment is

considered in [28]. Privacy-preserving crowd-sensing is considered

in [24], and the focus is to protect the locations of workers when

they report their sensing results, rather than considering our task

assignment setting, where workers need to move to a specified

location of the assigned task, and both locations (tasks and workers)

are perturbed with differential privacy.

7 CONCLUSION
In this work, we target the Privacy-preserving Batch-based Task As-

signment (PBTA) problem, where both workers and tasks use Geo-I

to perturb their locations before sending them to the untrusted the

server. We propose a novel solution k-Switch, which divides the

workers into small groups, and uses a secure computation protocol

k-HE for inner group communication. If workers inside the groups

find that switching tasks between them improves the number of

successfully assigned tasks, they swap tasks. Extensive experiments

demonstrate that k-Switch is both effective and efficient, achieving

significant utility gains with reasonable system overhead.
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