Online Ridesharing with Meeting Points

Jiachuan Wang¹, Peng Cheng², Libin Zheng³,Lei Chen¹, Wenjie Zhang⁴ ¹Hong Kong University of Science and Technology, Hong Kong, China ²East China Normal University, Shanghai, China ³Sun Yat-sen University, Guangzhou, China ⁴The University of New South Wales, Australia

Outline

- Background and Motivation
- The Meeting-Point-based Online Ridesharing Problem
- Framework Overview
- Methods
- Experimental Evaluation
- Summary

Ridesharing in the World

- Online platforms for ridesharing grows rapidly.
 - Each driver can serve more than one request when their routes have common sub-routes

Route Planning for Ridesharing

- Effective/efficient route planning strategy is highly demanded due to:
 - A large number of dynamically arriving requests
 - A large number of drivers
 - A large number of possible routes allowing share
 - Limited response time

New Mode: Meeting Points

Traditional route planning

- Requests are posted with source locations and destination locations
- Platform organizes drivers to pass these locations and serve riders

New Mode: Meeting Points

Traditional route planning

- Requests are posted with source locations and destination locations
- Platform organizes drivers to pass these locations and serve riders

However, due to the complex topology of the city road network, some locations (e.g., **A** and **B**) are **spatially close** to each other but **hard to access** for drivers.

New Mode: Meeting Points

Route planning with Meeting Points

- Meeting points (MP for short) are introduced as alternative locations for pick-up/drop-off locations of requests.
- E.g., driver and riders now meet at D.
- Short walk $(A \rightarrow D)$ of riders, large overall profit!

Problem of Ridesharing with Meeting Point (MP)

- Existing researches [1, 2] for MP are offline
 - **Inefficiency**: cannot serve **large-scale online** applications
- MP is not well-explored in the industry
 - Express Pool (Uber) encourages riders to walk to Express spots (meeting points) for efficient routing
 - **Inflexible**: **wait** until a group of requests has a shareable route and pick up them **together** like at a bus station [3]

Motivation

- Some vertices are more convenient to come and go and thus "**popular**"
 - E.g., vertices close to highways and downtown

• With flexible MPs, it is possible to **serve more** requests at or near those "**popular**" vertices, which makes them even **more frequently** used.

- These vertices serve as the **skeleton** of the road network
 - Effectiveness: estimate and select these popular vertices
 - Efficiency: fast algorithms especially on popular vertices

Motivation

• The requirement for a **road network skeleton** motivates us to take advantage of *k*-skip cover *V*^{*} [1], which is a selected subset of vertices to be the **skeleton** of a graph *G*.

 We call a vertex set V^{*} k-skip cover if for any shortest path of length k on a graph, there is at least one of its vertices ∈ V^{*}.

• To minimize the size of *V*^{*}, we need to find the most "popular" and convenient vertices, which frequently appear in shortest paths, which coincide with our requirement for meeting points.

Outline

- Background and Motivation
- The Meeting-Point-based Online Ridesharing Problem
- Framework Overview
- Methods
- Experimental Evaluation
- Summary

- Drivers
 - A set of *n* drivers $W = \{w_1, w_2, \dots, w_n\}$
 - Each is defined by $w_i = \langle l_i, a_i \rangle$ with current location l_i and capacity limitation a_i

12

- Drivers
 - A set of *n* drivers $W = \{w_1, w_2, \dots, w_n\}$
 - Each is defined by $w_i = \langle l_i, a_i \rangle$ with current location l_i and capacity limitation a_i
- Requests
 - A set of *m* requests $R = \{r_1, r_2, \dots, r_n\}$
 - Traditionally, each is defined by $r_j = \langle s_i, e_i, tr_j, tp_j, td_j, p_j, a_j \rangle$, where:
 - s_i/e_i for source/destination locations;
 - $tr_j/tp_j/td_j$ for time of release/pick-up deadline/drop-off deadline;
 - *p_j* for rejection penalty;
 - a_j for capacity.

13

- Traditional route planning:
 - Assign each driver w_i a route S_i , which is a sequence of s_j/e_j under the time and capacity constraints.
 - Minimizing a unified cost of:

- With **meeting point**, an assigned request has $\langle pi_j, de_j, wp_j, wd_j \rangle$ in addition, where:
 - *pi_j/de_j* for pick-up and drop-off locations
 - wp_j , wd_j for time of riders **walking** before picked up and after dropped off.

- With **meeting point**, an assigned request has $\langle pi_j, de_j, wp_j, wd_j \rangle$ in addition, where:
 - *pi_j/de_j* for pick-up and drop-off locations
 - wp_j , wd_j for time of riders walking before picked up and after dropped off.
- Meeting-Point-based route planning:
 - Assign each driver w_i a route S_i , which is a sequence of $\frac{s_i/e_i}{p_i} \frac{p_i}{de_j}$.
 - Minimizing a unified cost of:

cost of routes

The penalty for rejected requests

$$\beta \sum_{r_j \in \widehat{R}} (wp_j + wd_j)$$

The walking cost of requests

We prove the MORP problem is **NP-hard** by reducing it from the basic route planning problem[1] for shareable mobility services.

We further show that **no** deterministic nor randomized algorithm can guarantee a **constant Competitive Ratio**.

[1] Yongxin Tong et al. 2018

- **Meeting-Point**-based route planning:
 - Assign each driver w_i a route S_i , which is a sequence of $\frac{s_i/e_i}{p_i} \frac{p_i}{de_j}$.
 - Minimizing a unified cost of:

The penalty for rejected requests

cost of requests

Outline

- Background and Motivation
- The Meeting-Point-based Online Ridesharing Problem
- Framework Overview
- Methods
- Experimental Evaluation
- Summary

Existing method - Insertion

Insertion is an effective local optimal algorithm for route planning, which has linear $(O(|S_i|))$ time complexity [1]. It involves **shortest path queries** between the current route (S_i) and inserted locations (S_j, e_j) .

[1] Yongxin Tong et al. 2018

By adapting insertion for MORP, it involves **shortest path queries** between the current route (S_i) and all possible pairs of meeting points near (s_j , e_j).

If a vertex has *k* meeting points on average, the computational cost increases by $k \times k$ times, which is unacceptable.²⁰

Selecting optimal meeting points (MPs) online is time-consuming

Prepare MPs for each vertex offline to reduce the search space
 Design data structure for faster queries.

Outline

- Background and Motivation
- The Meeting-Point-based Online Ridesharing Problem
- Framework Overview
- Methods
- Experimental Evaluation
- Summary

Select Meeting Point Candidates

- Quantize how "convenient" a vertex is for transportation
 - MP candidates should easily get to and conveniently reach other vertices.
 - Given vertex u, define its n_r nearest vertices as reference vertices $n_o(u)$.
 - Equivalent Out Cost of *u*: the average distance towards its reference vertices

$$ECO(u) = \frac{\sum_{v \in n_o(u)} SP_c(u, v)}{n_r}$$

• Similarly, reverse the graph we can have **Equivalent Inward Cost**

$$ECI(u) = \frac{\sum_{v \in n_i(u)} SP_c(v, u)}{n_r}$$

Select Meeting Point Candidates

- Quantize how "convenient" a vertex is for transportation
 - MP candidates should easily get to and conveniently reach other vertices.
 - Now we can rank the candidate MPs $\{v_1, v_2, ..., v_n\}$ of a vertex *u* by Serving-Cost Score

$$SCS(u, v_i) = \beta \cdot SP_p(u, v_i) + \alpha \left(ECI(v_i) + ECO(v_i) \right)$$

Expected cost from walking

Expected cost from driving

Based on these statistics from shortest path queries, an O(|V|) Local-Flexibility-Filter Algorithm is proposed to select MPs for each vertex **offline**.

- With MPs, assigned routes can be concentrated on the convenient vertices
- We give the hierarchical order over the vertex set *V*:
 - **Defective vertices** V_{de} They are inconvenient to access.
 - **Core vertices** V_{co} They are used as MPs frequently.
 - **Sub-level vertices** *V*_{*su*} The remaining vertices are classified as sub-level vertices.

Defective vertices V_{de}

- We aim to remove the unwelcomed vertices in traditional ridesharing, which can be alternatively served by meeting points now.
- We propose a method to avoid two potential costs from vertex removal:
 - **The detour cost** A path containing removed vertex *u* no longer exists.
 - The inaccessibility cost The potential reject penalty of requests at the removed vertex.

Defective vertices V_{de}

• A 3-phase *O*(*NlogN*) *DVS* algorithm is proposed with theoretical guarantee

LEMMA 6.2. Removing all vertices selected by the DVS algorithm from G_c with their edges leads to no detour cost.

LEMMA 6.3. $\forall u \in V$ is accessible after removing vertices selected by the DVS algorithm from G_c with MPs.

Core vertices V_{co}

- Select "convenient" vertices as the skeleton of the graph
- *k*-skip cover has good compatibility with the meeting point: use it as backbone.

A graph and its **2-skip cover** *V** (Any shortest path longer than **2** contains at least one of its vertex)

Core vertices V_{co}

- Select "convenient" vertices as the skeleton of the graph
- *k*-skip cover has good compatibility with the meeting point: use it as backbone.

A graph and its **2-skip cover** *V**

A car picks up 2 requests in the **traditional** mode

Core vertices V_{co}

• Select "convenient" vertices as the skeleton of the graph

 v_{31}

• *k*-skip cover has good compatibility with the meeting point: use it as backbone.

A graph and its **2-skip cover** *V*^{*}

A car picks up 2 requests in the traditional mode

Both of *k*-skip cover and meeting points expect "convenient" vertices

A car picks up 2 requests in the **meeting point** mode (meet at v_{23})

- Select "convenient" vertices as the skeleton of the graph
- *k*-skip cover has good compatibility with the meeting point: use it as backbone.

Core vertices V_{co}

- Select "convenient" vertices as the skeleton of the graph
- *k*-skip cover has good compatibility with the meeting point: use it as backbone.
 - V_{co} is a *k*-skip cover on the updated graph without V_{de}
 - Proportion factor ϵ of vertices have at least one vertex $u \in V_{co}$ as its MP candidate

Meeting point -> more queries between *k*-skip cover

k-skip cover -> faster inner queries to
 improve efficiency

- Select "convenient" vertices as the skeleton of the graph
- *k*-skip cover has good compatibility with the meeting point: use it as backbone.
 - V_{co} is a *k*-skip cover on the updated graph without V_{de}
 - Proportion factor ϵ of vertices have at least one vertex $u \in V_{co}$ as its MP candidate

- Select "convenient" vertices as the skeleton of the graph
- *k*-skip cover has good compatibility with the meeting point: use it as backbone.
 - V_{co} is a *k*-skip cover on the updated graph without V_{de}
 - Proportion factor ϵ of vertices have at least one vertex $u \in V_{co}$ as its MP candidate

- Select "convenient" vertices as the skeleton of the graph
- *k*-skip cover has good compatibility with the meeting point: use it as backbone.
 - V_{co} is a *k*-skip cover on the updated graph without V_{de}
 - Proportion factor ϵ of vertices have at least one vertex $u \in V_{co}$ as its MP candidate

Hierarchical Meeting-Point Oriented graph

Graph construction

- Vertices: previously obtained *V*_{de}, *V*_{co}, *V*_{su}
- Edges: since *V*_{co} forms a *k*-skip cover, we can build super edges among *V*_{co} U*V*_{su} following existing theory [1]:
 - *E_{cc}*: super edges between core vertices
 - E_{cc} : super edges from core to sub-level vertices
 - E_{cc} : super edges from sub-level to core vertices

Hierarchical Meeting-Point Oriented graph

Graph construction

- Vertices: previously obtained *V*_{de}, *V*_{co}, *V*_{su}
- Edges: since *V_{co}* forms a *k*-skip cover, we can build super edges among *V_{co}UV_{su}* following existing theory [1]:
 - *E_{cc}*: super edges between core vertices
 - E_{cc} : super edges from core to sub-level vertices
 - E_{cc} : super edges from sub-level to core vertices

Recall that we select MP Candidates (MC(u)) for each vertex u

- Vertices $\in MC(u)$ are reachable via short walking \Rightarrow they are close to each other
- One interesting problem is, if inserting a candidate *v* ∈ *MC*(*u*) fails to meet the time limitation, do the rest candidates help?

Recall that we select MP Candidates (MC(u)) for each vertex u

- Vertices $\in MC(u)$ are reachable via short walking \Rightarrow they are close to each other
- One interesting problem is, if inserting a candidate *v* ∈ *MC*(*u*) fails to meet the time limitation, do the rest candidates help?
- ⇒ We define a new distance correlation, which **bounds the time saving** of switching from *v* to any other vertices.
- If deducting the saving still cannot meet the time limitation:
 - \Rightarrow prune the whole set MC(u)!

Recall that we select MP Candidates (*MC*(*u*)) for each vertex *u*

- Vertices $\in MC(u)$ are reachable via short walking \Rightarrow they are close to each other
- One interesting problem is, if inserting a candidate *v* ∈ *MC*(*u*) fails to meet the time limitation, do the rest candidates help?
- ⇒ We define a new distance correlation, which **bounds the time saving** of switching from *v* to any other vertices.
- If deducting the saving still cannot meet the time limitation:
 - \Rightarrow prune the whole set MC(u)!

- If inserting a candidate $v \in MC(u)$ fails to meet the time limitation, do the rest candidates help?
- **Bounds the time saving** of switching from *v* to any other vertices.
 - A driver want to serve a request at v_{22} , which has MP candidates $\{v_{22}, v_{32}\}$
 - If v_{22} exceeds the time limitation for 3 minutes, do we still need to test v_{32} ?

- If inserting a candidate $v \in MC(u)$ fails to meet the time limitation, do the rest candidates help?
- **Bounds the time saving** of switching from *v* to any other vertices.
 - A driver want to serve a request at v_{22} , which has MP candidates $\{v_{22}, v_{23}\}$
 - If v_{22} exceeds the time limitation for 3 minutes, do we still need to test v_{32} ?

Traditionally, we need to derive **all** the time costs from graph to v_{22} and v_{23} though they are **close** to each other

- If inserting a candidate $v \in MC(u)$ fails to meet the time limitation, do the rest candidates help?
- **Bounds the time saving** of switching from *v* to any other vertices.
 - A driver want to serve a request at v_{22} , which has MP candidates $\{v_{22}, v_{23}\}$
 - If v_{22} exceeds the time limitation for 3 minutes, do we still need to test v_{32} ?

- If inserting a candidate $v \in MC(u)$ fails to meet the time limitation, do the rest candidates help?
- **Bounds the time saving** of switching from *v* to any other vertices.
 - A driver want to serve a request at v_{22} , which has MP candidates $\{v_{22}, v_{23}\}$
 - If v_{22} exceeds the time limitation for 3 minutes, do we still need to test v_{32} ?

- If inserting a candidate $v \in MC(u)$ fails to meet the time limitation, do the rest candidates help?
- **Bounds the time saving** of switching from *v* to any other vertices.
 - A driver want to serve a request at v_{22} , which has MP candidates $\{v_{22}, v_{23}\}$
 - If v_{22} exceeds the time limitation for 3 minutes, do we still need to test v_{32} ?

- If inserting a candidate $v \in MC(u)$ fails to meet the time limitation, do the rest candidates help?
- **Bounds the time saving** of switching from *v* to any other vertices.
 - A driver want to serve a request at v_{22} , which has MP candidates $\{v_{22}, v_{23}\}$
 - If v_{22} exceeds the time limitation for 3 minutes, do we still need to test v_{32} ?

- If inserting a candidate $v \in MC(u)$ fails to meet the time limitation, do the rest candidates help?
- **Bounds the time saving** of switching from *v* to any other vertices.
 - A driver want to serve a request at v_{22} , which has MP candidates $\{v_{22}, v_{23}\}$
 - If v_{22} exceeds the time limitation for 3 minutes, do we still need to test v_{32} ?

If the shortest path from v_d to v_{32} is passed through v_{42} , the time saving is $(v_d \to v_{23} + v_{23} \to v_{22}) - (v_d \to v_{42} + v_{42} \to v_{32}) \le$ $(v_d \to v_{23} + v_{23} \to v_{22}) - (v_d \to v_{23} + v_{23} \to v_{32}) =$ $v_{23} \to v_{22} - v_{23} \to v_{32} \le 1$

Detailed theory and proof are given in the paper

- If inserting a candidate $v \in MC(u)$ fails to meet the time limitation, do the rest candidates help?
- **Bounds the time saving** of switching from *v* to any other vertices.

- Design SMDBoost algorithm.
- For each pair of driver and request, we test one vertex for insertion and prune the rest if the time limitation cannot meet with the bounded saving.

```
Algorithm 2: SMDBoost
  Input: a driver w_i with route S_{w_i}, request r_i, MP candidate set
          MC, set maximum difference SMD, checker set Ch, dead
          vertices DV
  Output: a route S_w^* for the driver w and updated DV
1 if Driver's location l_i \in DV then
      Return S_{w_i} and DV without insertion
 2
<sup>3</sup> Generate arriving time arv[\cdot] for S_{w_i}
4 Collect all sub-level vertices which have super-edges to vertices in
    MC(s_i) into set Ne
5 The largest index to insert pick-up: id^* = |S_{w_i}|
6 foreach v \in S_{w_i} do
       if v \in Ne then
            Continue
 8
       if arv[v] + SP_h(v, Ch(s_i)) - SMD(Ch(s_i)) \ge tp_i then
9
            if v = l_i then
10
               Add l_i to DV. Insertion fails and returns Null
11
           Record id^* = idx(v) - 1
12
13
            Break
14 Insert r_i with adapted insertion algorithm where insertion indexes
    of pick-ups larger than id^* are pruned.
15 return S_w^*, DV
```

Outline

- Background and Motivation
- The Meeting-Point-based Online Ridesharing Problem
- Framework Overview
- Methods
- Experimental Evaluation
- Summary

- Road Network
 - NYC (|V|=57,030, |E|=122,337)
- Real-World Dataset
 - Taxi Trips (yellow and green) in NYC (277,410 trip records)
- Synthetic Dataset
 - Generated according to the distribution of NYC (100k to 1m trip records)

- Compared parameters
 - e_r : the deadline coefficient.
 - a_w : the capacity of workers.
 - α : the weight for driving cost.
 - β : the weight for walking cost.
 - p_o : the ratio of penalty cost
 - |W|: number of workers
 - |R|: number of requests

Parameters	Settings
Deadline Coefficient e_r	0.1, 0.2, 0.3 , 0.4, 0.5
Capacity a_w	2, 3 , 4, 7, 10
Driving Distance Weight α	1
Walking Distance Weight β	0.5, 1 , 1.5, 2
Penalty po	3, 5, 10, 15, 30
Number of drivers $ W $	5k, 10k, 20k , 30k, 40k
Number of requests $ R $	100k, 200k, 400k, 800k, 1000K

- Tested Algorithms
 - Traditional
 - **GreedyDP [1]**: the state-of-art route planning algorithm using insertion. No demand-related information is used.
 - **Kinetic Tree [2]**: it saves all the possible routes for the assigned request using a structure called Kinetic and inserts requests by traversing and updating the tree.
 - Meeting-Point-Based
 - **BasicMP**: It is an extension from GreedyDP by adapting MPs to solve the MORP problem.
 - **First Serve.** A variant of BasicMP, where each request is directly assigned to the first driver who can serve it.
 - HSRP. It uses the HMPO Graph to improve the effectiveness of BasicMP without pruning.

Performance of varying number of workers |W|

Performance of varying number of requests |R|

Outline

- Background and Motivation
- Framework Overview
- The Cache Replacement Problem
- Theoretical Guarantees
- Experimental Evaluation
- Summary

Summary

- We formulate the online route planning problem with MPs mathematically, namely MORP. We prove that it is NP-hard and has no algorithm with a constant competitive ratio.
- We propose an algorithm to select MP candidates for riders, which is based on a unified cost function considering the travel cost from additional walking.
- We propose a novel hierarchical structure of the road network, namely hierarchical meeting-point oriented (HMPO) graph, to fasten the solution for MORP.
- Based on the HMPO graph, we propose an effective and efficient insertor, namely SMDB, to handle the requests in MORP.

Thank You!

The code and datasets <u>https://github.com/dominatorX/open.</u>