
Online Ridesharing with Meeting Points

Jiachuan Wang1, Peng Cheng2, Libin Zheng3,Lei Chen1, Wenjie Zhang4

1Hong Kong University of Science and Technology, Hong Kong, China
2East China Normal University, Shanghai, China

3Sun Yat-sen University, Guangzhou, China
4The University of New South Wales, Australia

1

Outline

2

• Background and Motivation

• The Meeting-Point-based Online Ridesharing Problem

• Framework Overview

• Methods

• Experimental Evaluation

• Summary

Ridesharing in the World

3

Uber Lyft DiDi

• Online platforms for ridesharing grows rapidly.
• Each driver can serve more than one request when their routes have common sub-routes

• Effective/efficient route planning strategy is highly demanded due to:
• A large number of dynamically arriving requests

• A large number of drivers

• A large number of possible routes allowing share

• Limited response time

Route Planning for Ridesharing

4

New Mode: Meeting Points

5

• Requests are posted with source
locations and destination locations

• Platform organizes drivers to pass these
locations and serve riders

Traditional route planning

A

B
C

New Mode: Meeting Points

6

• Requests are posted with source
locations and destination locations

• Platform organizes drivers to pass these
locations and serve riders

Traditional route planning

A

B
C

However, due to the complex
topology of the city road network,
some locations (e.g., A and B) are
spatially close to each other but
hard to access for drivers.

New Mode: Meeting Points

• Meeting points (MP for short) are introduced as alternative locations
for pick-up/drop-off locations of requests.

• E.g., driver and riders now meet at D.
• Short walk (A→D) of riders, large overall profit!

Route planning with Meeting Points

7

A

B
C

D

• Existing researches [1, 2] for MP are offline
• Inefficiency: cannot serve large-scale online applications

• MP is not well-explored in the industry
• Express Pool (Uber) encourages riders to walk to Express spots (meeting points) for

efficient routing

• Inflexible: wait until a group of requests has a shareable route and pick up them
together like at a bus station [3]

Problem of Ridesharing with Meeting Point (MP)

8

[1] Mitja Stiglic , et al. 2015
[2] Meng Zhao, et al. 2018
[3] Uber Express Just like a Bus. https://gizmodo.com/i-tried-uber-snew-pool-express-service-and-honestly-j-1823190462

• Some vertices are more convenient to come and go and thus “popular”
• E.g., vertices close to highways and downtown

• With flexible MPs, it is possible to serve more requests at or near those
“popular” vertices, which makes them even more frequently used.

• These vertices serve as the skeleton of the road network
• Effectiveness: estimate and select these popular vertices

• Efficiency: fast algorithms especially on popular vertices

Motivation

9

• The requirement for a road network skeleton motivates us to take
advantage of 𝑘-skip cover 𝑉∗ [1], which is a selected subset of vertices to
be the skeleton of a graph 𝐺.

Motivation

10

[1] Yufei Tao, et al. 2011

• To minimize the size of 𝑉∗, we need to find the most “popular” and
convenient vertices, which frequently appear in shortest paths, which
coincide with our requirement for meeting points.

• We call a vertex set 𝑉∗ k-skip cover if for any shortest path of length k on a graph,
there is at least one of its vertices ∈ 𝑉∗.

Outline

11

• Background and Motivation

• The Meeting-Point-based Online Ridesharing Problem

• Framework Overview

• Methods

• Experimental Evaluation

• Summary

• Drivers
• A set of 𝑛 drivers 𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑛

• Each is defined by 𝑤𝑖 = 𝑙𝑖 , 𝑎𝑖 with current location 𝑙𝑖 and capacity limitation 𝑎𝑖

• Requests
• A set of 𝑚 requests 𝑅 = 𝑟1, 𝑟2, … , 𝑟𝑛

• Traditionally, each is defined by 𝑟𝑗 = 𝑠𝑖 , 𝑒𝑖 , 𝑡𝑟𝑗 , 𝑡𝑝𝑗 , 𝑡𝑑𝑗 , 𝑝𝑗 , 𝑎𝑗 , where:
• 𝑠𝑖/𝑒𝑖 for source/destination locations;
• 𝑡𝑟𝑗/𝑡𝑝𝑗/𝑡𝑑𝑗 for time of release/pick-up deadline/drop-off deadline;

• 𝑝𝑗 for rejection penalty;

• 𝑎𝑗 for capacity.

• With meeting point, an assigned request has 𝑝𝑖𝑗 , 𝑑𝑒𝑗 , 𝑤𝑝𝑗 , 𝑤𝑑𝑗 in addition, where:
• 𝑝𝑖𝑗/𝑑𝑒𝑗 for pick-up and drop-off locations

• 𝑤𝑝𝑗 , 𝑤𝑑𝑗 for time of riders walking before picked up and after dropped off.

• Traditional route planning:
• Assign each driver 𝑤𝑖 a route 𝑆𝑖, which is a sequence of 𝑠𝑗/𝑒𝑗 under the time and capacity constraints.
• Minimizing a unified cost of:

𝛼 ෍

𝑤𝑖∈𝑊

𝐷 𝑆𝑤𝑖
 + ෍

𝑟𝑗∈ ത𝑅

𝑝𝑗

The Meeting-Point-based Online Ridesharing Problem

12B
𝑤𝑖 = 𝑙𝑖: 𝐵, 𝑎𝑖: 4

• Drivers
• A set of 𝑛 drivers 𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑛

• Each is defined by 𝑤𝑖 = 𝑙𝑖 , 𝑎𝑖 with current location 𝑙𝑖 and capacity limitation 𝑎𝑖

• Requests
• A set of 𝑚 requests 𝑅 = 𝑟1, 𝑟2, … , 𝑟𝑛

• Traditionally, each is defined by 𝑟𝑗 = 𝑠𝑖 , 𝑒𝑖 , 𝑡𝑟𝑗 , 𝑡𝑝𝑗 , 𝑡𝑑𝑗 , 𝑝𝑗 , 𝑎𝑗 , where:
• 𝑠𝑖/𝑒𝑖 for source/destination locations;
• 𝑡𝑟𝑗/𝑡𝑝𝑗/𝑡𝑑𝑗 for time of release/pick-up deadline/drop-off deadline;

• 𝑝𝑗 for rejection penalty;

• 𝑎𝑗 for capacity.

• With meeting point, an assigned request has 𝑝𝑖𝑗 , 𝑑𝑒𝑗 , 𝑤𝑝𝑗 , 𝑤𝑑𝑗 in addition, where:
• 𝑝𝑖𝑗/𝑑𝑒𝑗 for pick-up and drop-off locations

• 𝑤𝑝𝑗 , 𝑤𝑑𝑗 for time of riders walking before picked up and after dropped off.

• Traditional route planning:
• Assign each driver 𝑤𝑖 a route 𝑆𝑖, which is a sequence of 𝑠𝑗/𝑒𝑗 under the time and capacity constraints.
• Minimizing a unified cost of:

𝛼 ෍

𝑤𝑖∈𝑊

𝐷 𝑆𝑤𝑖
 + ෍

𝑟𝑗∈ ത𝑅

𝑝𝑗

The Meeting-Point-based Online Ridesharing Problem

13

A

C

𝑟𝑗 = 𝑠𝑖: 𝐴, 𝑒𝑖: 𝐶, …

• Drivers
• A set of 𝑛 drivers 𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑛

• Each is defined by 𝑤𝑖 = 𝑙𝑖 , 𝑎𝑖 with current location 𝑙𝑖 and capacity limitation 𝑎𝑖

• Requests
• A set of 𝑚 requests 𝑅 = 𝑟1, 𝑟2, … , 𝑟𝑛

• Traditionally, each is defined by 𝑟𝑗 = 𝑠𝑖 , 𝑒𝑖 , 𝑡𝑟𝑗 , 𝑡𝑝𝑗 , 𝑡𝑑𝑗 , 𝑝𝑗 , 𝑎𝑗 , where:
• 𝑠𝑖/𝑒𝑖 for source/destination locations;
• 𝑡𝑟𝑗/𝑡𝑝𝑗/𝑡𝑑𝑗 for time of release/pick-up deadline/drop-off deadline;

• 𝑝𝑗 for rejection penalty;

• 𝑎𝑗 for capacity.

• With meeting point, an assigned request has 𝑝𝑖𝑗 , 𝑑𝑒𝑗 , 𝑤𝑝𝑗 , 𝑤𝑑𝑗 in addition, where:
• 𝑝𝑖𝑗/𝑑𝑒𝑗 for pick-up and drop-off locations

• 𝑤𝑝𝑗 , 𝑤𝑑𝑗 for time of riders walking before picked up and after dropped off.

• Traditional route planning:
• Assign each driver 𝑤𝑖 a route 𝑺𝒊, which is a sequence of 𝒔𝒋/𝒆𝒋 under the time and capacity constraints.
• Minimizing a unified cost of:

𝛼 ෍

𝑤𝑖∈𝑊

𝐷 𝑆𝑤𝑖
 + ෍

𝑟𝑗∈ ത𝑅

𝑝𝑗 + 𝛽 ෍

𝑟𝑗∈ ෠𝑅

𝑤𝑝𝑗 + 𝑤𝑑𝑗

The Meeting-Point-based Online Ridesharing Problem

14

The driving
cost of routes

The penalty for
rejected requests

A

B
C

𝑆𝑖 = 𝐵 → 𝐴 → 𝐶

• Drivers
• A set of 𝑛 drivers 𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑛

• Each is defined by 𝑤𝑖 = 𝑙𝑖 , 𝑎𝑖 with current location 𝑙𝑖 and capacity limitation 𝑎𝑖

• Requests
• A set of 𝑚 requests 𝑅 = 𝑟1, 𝑟2, … , 𝑟𝑛

• Traditionally, each is defined by 𝑟𝑗 = 𝑠𝑖 , 𝑒𝑖 , 𝑡𝑟𝑗 , 𝑡𝑝𝑗 , 𝑡𝑑𝑗 , 𝑝𝑗 , 𝑎𝑗 , where:
• 𝑠𝑖/𝑒𝑖 for source/destination locations;
• 𝑡𝑟𝑗/𝑡𝑝𝑗/𝑡𝑑𝑗 for time of release/pick-up deadline/drop-off deadline;

• 𝑝𝑗 for rejection penalty;

• 𝑎𝑗 for capacity.

• With meeting point, an assigned request has 𝑝𝑖𝑗 , 𝑑𝑒𝑗 , 𝑤𝑝𝑗 , 𝑤𝑑𝑗 in addition, where:
• 𝑝𝑖𝑗/𝑑𝑒𝑗 for pick-up and drop-off locations

• 𝑤𝑝𝑗 , 𝑤𝑑𝑗 for time of riders walking before picked up and after dropped off.

• Traditional route planning:
• Assign each driver 𝑤𝑖 a route 𝑆𝑖, which is a sequence of 𝑝𝑖𝑗/𝑑𝑒𝑗 under the time and capacity constraints.
• Minimizing a unified cost of:

𝛼 ෍

𝑤𝑖∈𝑊

𝐷 𝑆𝑤𝑖
 + ෍

𝑟𝑗∈ ത𝑅

𝑝𝑗 + 𝛽 ෍

𝑟𝑗∈ ෠𝑅

𝑤𝑝𝑗 + 𝑤𝑑𝑗

The Meeting-Point-based Online Ridesharing Problem

15

The driving
cost of routes

The penalty for
rejected requests

The walking
cost of requests

A

B
C

𝑆𝑖 = 𝐵 → 𝐴 → 𝐶

D
𝑟𝑗 = 𝑠𝑖: 𝐴, 𝑒𝑖: 𝐶, …

𝑝𝑖𝑖: 𝐷, 𝑑𝑒𝑖: 𝐶, 𝑤𝑝𝑗: 2, 𝑤𝑑𝑗: 0

• Drivers
• A set of 𝑛 drivers 𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑛

• Each is defined by 𝑤𝑖 = 𝑙𝑖 , 𝑎𝑖 with current location 𝑙𝑖 and capacity limitation 𝑎𝑖

• Requests
• A set of 𝑚 requests 𝑅 = 𝑟1, 𝑟2, … , 𝑟𝑛

• Traditionally, each is defined by 𝑟𝑗 = 𝑠𝑖 , 𝑒𝑖 , 𝑡𝑟𝑗 , 𝑡𝑝𝑗 , 𝑡𝑑𝑗 , 𝑝𝑗 , 𝑎𝑗 , where:
• 𝑠𝑖/𝑒𝑖 for source/destination locations;
• 𝑡𝑟𝑗/𝑡𝑝𝑗/𝑡𝑑𝑗 for time of release/pick-up deadline/drop-off deadline;

• 𝑝𝑗 for rejection penalty;

• 𝑎𝑗 for capacity.

• With meeting point, an assigned request has 𝑝𝑖𝑗 , 𝑑𝑒𝑗 , 𝑤𝑝𝑗 , 𝑤𝑑𝑗 in addition, where:
• 𝒑𝒊𝒋/𝒅𝒆𝒋 for pick-up and drop-off locations

• 𝑤𝑝𝑗 , 𝑤𝑑𝑗 for time of riders walking before picked up and after dropped off.

• Meeting-Point-based route planning:
• Assign each driver 𝑤𝑖 a route 𝑆𝑖, which is a sequence of 𝑠𝑖/𝑒𝑖 𝒑𝒊𝒋/𝒅𝒆𝒋.
• Minimizing a unified cost of:

𝛼 ෍

𝑤𝑖∈𝑊

𝐷 𝑆𝑤𝑖
 + ෍

𝑟𝑗∈ ത𝑅

𝑝𝑗 + 𝛽 ෍

𝑟𝑗∈ ෠𝑅

𝑤𝑝𝑗 + 𝑤𝑑𝑗

The Meeting-Point-based Online Ridesharing Problem

16

The driving
cost of routes

The penalty for
rejected requests

The walking
cost of requests

A

B
C

𝑆𝑖 = 𝐵 → 𝐴 → 𝐶

D

𝑆𝑖 = 𝐵 → 𝐷 → 𝐶

𝑟𝑗 = 𝑠𝑖: 𝐴, 𝑒𝑖: 𝐶, …

𝑝𝑖𝑖: 𝐷, 𝑑𝑒𝑖: 𝐶, 𝑤𝑝𝑗: 2, 𝑤𝑑𝑗: 0

• Drivers
• A set of 𝑛 drivers 𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑛

• Each is defined by 𝑤𝑖 = 𝑙𝑖 , 𝑎𝑖 with current location 𝑙𝑖 and capacity limitation 𝑎𝑖

• Requests
• A set of 𝑚 requests 𝑅 = 𝑟1, 𝑟2, … , 𝑟𝑛

• Traditionally, each is defined by 𝑟𝑗 = 𝑠𝑖 , 𝑒𝑖 , 𝑡𝑟𝑗 , 𝑡𝑝𝑗 , 𝑡𝑑𝑗 , 𝑝𝑗 , 𝑎𝑗 , where:
• 𝑠𝑖/𝑒𝑖 for source/destination locations;
• 𝑡𝑟𝑗/𝑡𝑝𝑗/𝑡𝑑𝑗 for time of release/pick-up deadline/drop-off deadline;

• 𝑝𝑗 for rejection penalty;

• 𝑎𝑗 for capacity.

• With meeting point, an assigned request has 𝑝𝑖𝑗 , 𝑑𝑒𝑗 , 𝑤𝑝𝑗 , 𝑤𝑑𝑗 in addition, where:
• 𝒑𝒊𝒋/𝒅𝒆𝒋 for pick-up and drop-off locations

• 𝑤𝑝𝑗 , 𝑤𝑑𝑗 for time of riders walking before picked up and after dropped off.

• Meeting-Point-based route planning:
• Assign each driver 𝑤𝑖 a route 𝑆𝑖, which is a sequence of 𝑠𝑖/𝑒𝑖 𝒑𝒊𝒋/𝒅𝒆𝒋.
• Minimizing a unified cost of:

𝛼 ෍

𝑤𝑖∈𝑊

𝐷 𝑆𝑤𝑖
 + ෍

𝑟𝑗∈ ത𝑅

𝑝𝑗 + 𝛽 ෍

𝑟𝑗∈ ෠𝑅

𝑤𝑝𝑗 + 𝑤𝑑𝑗

The Meeting-Point-based Online Ridesharing Problem

17

The driving
cost of routes

The penalty for
rejected requests

The walking
cost of requests

We prove the MORP problem is NP-hard by reducing
it from the basic route planning problem[1] for
shareable mobility services.

We further show that no deterministic nor randomized
algorithm can guarantee a constant Competitive Ratio.

[1] Yongxin Tong et al. 2018

Outline

18

• Background and Motivation

• The Meeting-Point-based Online Ridesharing Problem

• Framework Overview

• Methods

• Experimental Evaluation

• Summary

3

𝑣55

𝑣24

𝑣58

𝑣31

Existing method - Insertion

19

Insertion is an effective local optimal algorithm for route planning, which has
linear (𝑂 𝑆𝑖) time complexity [1].
It involves shortest path queries between the current route (𝑆𝑖) and inserted
locations (𝑠𝑗 , 𝑒𝑗).

[1] Yongxin Tong et al. 2018

𝑣51

𝑣61

3

3

3

3

3

3

3

3

𝑣21

𝑣14𝑣13𝑣12𝑣11

33

𝑣16𝑣15

3

𝑣41

3

3

3

3

3

𝑣17 𝑣19𝑣18

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

𝑤𝑖 = 𝑙𝑖: 𝑣21 ; 𝑆𝑖 = 𝑣21, 𝑣55

𝑣55

𝑟𝑗 = 𝑠𝑗: 𝑣24, 𝑒𝑗: 𝑣58

𝑣24

𝑣58

𝑤𝑖 = 𝑙𝑖: 𝑣21 ; 𝑆𝑖 = 𝑣21, 𝒗𝟐𝟒, 𝑣55, 𝒗𝟓𝟖

𝑣21

3

𝑣55

𝑣24

𝑣58

𝑣22

𝑣31

Adapt Insertion by Enumerating Meeting Points

20

By adapting insertion for MORP, it involves shortest path queries between the
current route (𝑆𝑖) and all possible pairs of meeting points near (𝑠𝑗 , 𝑒𝑗).

If a vertex has 𝑘 meeting points on average, the computational cost increases by
𝑘 × 𝑘 times, which is unacceptable.

𝑣51

𝑣61

3

3

3

3

3

3

3

3

𝑣21

𝑣14𝑣13𝑣12𝑣11

33

𝑣16𝑣15

3

𝑣41

3

3

3

3

3

𝑣17 𝑣19𝑣18

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

𝑣55

𝑣24

𝑣58

𝑣21

With Meeting Points, possible insertion location pairs
are greatly increased (1 × 1 to 9 × 9) in the Figure.

Framework

21

Selecting optimal meeting points (MPs) online is time-consuming

1) Prepare MPs for each vertex offline to reduce the search space

2) Design data structure for faster queries.

Meeting points

selection algorithm

MP MPMPV

Hierarchical Meeting-

Point Oriented graph

Off-line

Pre-processing

 Convenient

score for vertices

22

a. Rider(s)

c. Drivers

b. Proper meeting points

MP
Meeting points

selection
 Insertion

MPMP

d. Valid inserted routes

MP MP

Input UpdateOnline Assignment

Framework

• Background and Motivation

• The Meeting-Point-based Online Ridesharing Problem

• Framework Overview

• Methods

• Experimental Evaluation

• Summary

Outline

23

Select Meeting Point Candidates

• Quantize how “convenient” a vertex is for transportation
• MP candidates should easily get to and conveniently reach other vertices.

• Given vertex 𝑢, define its 𝑛𝑟 nearest vertices as reference vertices 𝑛𝑜 𝑢 .

• Equivalent Out Cost of 𝑢: the average distance towards its reference vertices

• Similarly, reverse the graph we can have Equivalent Inward Cost

Expected cost
from driving

Expected cost
from walking

Select Meeting Point Candidates

25

• Quantize how “convenient” a vertex is for transportation
• MP candidates should easily get to and conveniently reach other vertices.

• Now we can rank the candidate MPs 𝑣1, 𝑣2, … , 𝑣𝑛 of a vertex 𝑢 by Serving-Cost Score

𝑆𝐶𝑆 𝑢, 𝑣𝑖 = 𝛽 ⋅ 𝑆𝑃𝑝 𝑢, 𝑣𝑖 + 𝛼 𝐸𝐶𝐼 𝑣𝑖 + 𝐸𝐶𝑂 𝑣𝑖

Based on these statistics from shortest path queries, an 𝑂 𝑉 Local-
Flexibility-Filter Algorithm is proposed to select MPs for each vertex offline.

Hierarchical Meeting-Point Oriented graph

26

• With MPs, assigned routes can be concentrated on the convenient vertices

• We give the hierarchical order over the vertex set 𝑉:
• Defective vertices 𝑽𝒅𝒆 They are inconvenient to access.

• Core vertices 𝑽𝒄𝒐 They are used as MPs frequently.

• Sub-level vertices 𝑽𝒔𝒖 The remaining vertices are classified as sub-level vertices.

Hierarchical Meeting-Point Oriented graph

27

Defective vertices 𝑽𝒅𝒆

• We aim to remove the unwelcomed vertices in traditional ridesharing, which
can be alternatively served by meeting points now.

• We propose a method to avoid two potential costs from vertex removal:
• The detour cost A path containing removed vertex 𝑢 no longer exists.

• The inaccessibility cost The potential reject penalty of requests at the removed vertex.

𝑩

𝑭

𝑪

𝑬

𝑨

𝑫

13

28

18

15

22 31

20

(b) Graph for passenger
𝑭𝑬

2

𝑫

4

3

3

76 65

3 5

(a) Graph for car

𝑩 𝑪𝑨

Hierarchical Meeting-Point Oriented graph

28

Defective vertices 𝑽𝒅𝒆

• A 3-phase 𝑂(𝑁𝑙𝑜𝑔𝑁) 𝐷𝑉𝑆 algorithm is proposed with theoretical guarantee

𝑩

𝑭

𝑪

𝑬

𝑨

𝑫

13

28

18

15

22 31

20

(b) Graph for passenger
𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪𝑨

𝑽𝒅𝒆

(a) Graph for car

Hierarchical Meeting-Point Oriented graph

29

𝑣21

𝑣31

𝑣41

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

A graph and its 2-skip cover 𝑽∗
(Any shortest path longer than 2
contains at least one of its vertex)

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.

Hierarchical Meeting-Point Oriented graph

30

𝑣21

𝑣31

𝑣41

𝑣24

𝑣42

𝑣31

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

𝑣13

A graph and its 2-skip cover 𝑽∗ A car picks up 2 requests
in the traditional mode

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.

Hierarchical Meeting-Point Oriented graph

31

𝑣21

𝑣31

𝑣41

𝑣24

𝑣42

𝑣31

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

𝑣13

𝑣24

𝑣42

𝑣31

𝑣13

𝑣23

A graph and its 2-skip cover 𝑽∗ A car picks up 2 requests
in the traditional mode

A car picks up 2 requests
in the meeting point mode
(meet at 𝑣23)

Both of 𝒌-skip cover and meeting
points expect “convenient” vertices

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.

Hierarchical Meeting-Point Oriented graph

32

𝑣21

𝑣31

𝑣41

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

A graph and its 2-skip cover 𝑽∗ A car picks up 2 requests
in the traditional mode

A car picks up 2 requests
in the meeting point mode
(meet at 𝑣23)

Meeting point -> more queries
between 𝑘-skip cover

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.

Hierarchical Meeting-Point Oriented graph

33

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
• 𝑽𝒄𝒐 is a 𝒌-skip cover on the updated graph without 𝑉𝑑𝑒

• Proportion factor 𝜖 of vertices have at least one vertex 𝑢 ∈ 𝑉𝑐𝑜 as its MP candidate

Meeting point -> more queries
between 𝑘-skip cover

𝒌-skip cover -> faster inner queries to
improve efficiency

Hierarchical Meeting-Point Oriented graph

34

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
• 𝑽𝒄𝒐 is a 𝒌-skip cover on the updated graph without 𝑉𝑑𝑒

• Proportion factor 𝜖 of vertices have at least one vertex 𝑢 ∈ 𝑉𝑐𝑜 as its MP candidate

Formulate as an integer
linear program

Propose algorithm with
theoretical bound on # of 𝑉𝑐𝑜

Hierarchical Meeting-Point Oriented graph

35

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
• 𝑽𝒄𝒐 is a 𝒌-skip cover on the updated graph without 𝑉𝑑𝑒

• Proportion factor 𝜖 of vertices have at least one vertex 𝑢 ∈ 𝑉𝑐𝑜 as its MP candidate

𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪𝑨

𝑽𝒅𝒆

(a) Graph for car

Hierarchical Meeting-Point Oriented graph

36

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
• 𝑽𝒄𝒐 is a 𝒌-skip cover on the updated graph without 𝑉𝑑𝑒

• Proportion factor 𝜖 of vertices have at least one vertex 𝑢 ∈ 𝑉𝑐𝑜 as its MP candidate

𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪𝑨

(a) Graph for car

𝑽𝒅𝒆

𝑽𝒄𝒐

𝑽𝒔𝒖

Hierarchical Meeting-Point Oriented graph

37

Graph construction

• Vertices: previously obtained 𝑉𝑑𝑒 , 𝑉𝑐𝑜, 𝑉𝑠𝑢

• Edges: since 𝑉𝑐𝑜 forms a 𝑘-skip cover, we can build super edges among
𝑉𝑐𝑜⋃𝑉𝑠𝑢 following existing theory [1]:
• 𝐸𝑐𝑐: super edges between core vertices

• 𝐸𝑐𝑐: super edges from core to sub-level vertices

• 𝐸𝑐𝑐: super edges from sub-level to core vertices

𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪

𝑽𝒅𝒆

𝑽𝒄𝒐

𝑽𝒔𝒖

[1] Yufei Tao, et al. 2011

Hierarchical Meeting-Point Oriented graph

38

Graph construction

• Vertices: previously obtained 𝑉𝑑𝑒 , 𝑉𝑐𝑜, 𝑉𝑠𝑢

• Edges: since 𝑉𝑐𝑜 forms a 𝑘-skip cover, we can build super edges among
𝑉𝑐𝑜⋃𝑉𝑠𝑢 following existing theory [1]:
• 𝐸𝑐𝑐: super edges between core vertices

• 𝐸𝑐𝑐: super edges from core to sub-level vertices

• 𝐸𝑐𝑐: super edges from sub-level to core vertices

𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪

𝑽𝒅𝒆

𝑽𝒄𝒐

𝑽𝒔𝒖
𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪𝑨

𝑬𝒔𝒄

𝑬𝒄𝒔

𝑬𝒄𝒄

[1] Yufei Tao, et al. 2011

HMPO Graph-Based Insertion

39

Recall that we select MP Candidates (𝑴𝑪 𝒖) for each vertex 𝒖

• Vertices∈ 𝑀𝐶 𝑢 are reachable via short walking ⇒ they are close to each other

• One interesting problem is, if inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the
time limitation, do the rest candidates help?

HMPO Graph-Based Insertion

40

Recall that we select MP Candidates (𝑴𝑪 𝒖) for each vertex 𝒖

• Vertices∈ 𝑀𝐶 𝑢 are reachable via short walking ⇒ they are close to each other

• One interesting problem is, if inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the
time limitation, do the rest candidates help?

• ⇒ We define a new distance correlation, which bounds the time saving of
switching from 𝑣 to any other vertices.

• If deducting the saving still cannot meet the time limitation:
• ⇒ prune the whole set 𝑀𝐶 𝑢 !

HMPO Graph-Based Insertion

41

Recall that we select MP Candidates (𝑴𝑪 𝒖) for each vertex 𝒖

• Vertices∈ 𝑀𝐶 𝑢 are reachable via short walking ⇒ they are close to each other

• One interesting problem is, if inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the
time limitation, do the rest candidates help?

• ⇒ We define a new distance correlation, which bounds the time saving of
switching from 𝑣 to any other vertices.

• If deducting the saving still cannot meet the time limitation:
• ⇒ prune the whole set 𝑀𝐶 𝑢 !

HMPO Graph-Based Insertion

42

• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the time limitation, do the rest
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices.
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣32

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣22
𝑣21

𝑣31

𝑣41

𝑣𝑑

𝑣23

𝑣32

𝑣42

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

𝑀𝐶(𝑣22)

HMPO Graph-Based Insertion

43

• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the time limitation, do the rest
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices.
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣22
𝑣21

𝑣31

𝑣41

𝑣𝑑

𝑣23

𝑣32

𝑣42

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

𝑀𝐶(𝑣22) Traditionally, we need to
derive all the time costs from
graph to 𝑣22 and 𝑣23 though
they are close to each other

HMPO Graph-Based Insertion

44

• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the time limitation, do the rest
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices.
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣22
𝑣21

𝑣31

𝑣41

𝑣𝑑

𝑣23

𝑣32

𝑣42

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

𝑣𝑑

𝑀𝐶(𝑣22)

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

Luckily, the 𝑘-skip cover “cut
off” the shortest paths using the
core vertices, which enables us

to bound the time-saving.

HMPO Graph-Based Insertion

45

• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the time limitation, do the rest
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices.
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣𝑑

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

Cut off from core vertices:
If 𝑣𝑑 shares no super edges with

𝑣21, 𝑣23, 𝑣31, 𝑣42 , any shortest
paths from 𝑣𝑑 to 𝑣32 and 𝑣22

need to pass the 4 core vertices

HMPO Graph-Based Insertion

46

• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the time limitation, do the rest
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices.
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣𝑑

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

The distance from the 4 core vertices
𝑣21, 𝑣23, 𝑣31, 𝑣42 to 𝑣32 and 𝑣22

2

1

1

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣31

𝑣42

𝑣21

𝑣23

𝑣322

2

1

1

2

HMPO Graph-Based Insertion

47

• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the time limitation, do the rest
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices.
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣𝑑

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

The distance from the 4 core vertices
𝑣21, 𝑣23, 𝑣31, 𝑣42 to 𝑣32 and 𝑣22

2

1

1

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣31

𝑣42

𝑣21

𝑣23

𝑣322

2

1

1

2
𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

−1

−1

1

1

Calculate the difference for
each core vertices, the time

saving is bounded by 1 here.

HMPO Graph-Based Insertion

48

• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the time limitation, do the rest
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices.
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣𝑑

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

If the shortest path from 𝑣𝑑 to 𝑣32 is passed through
𝑣42, the time saving is

𝑣𝑑 → 𝑣23 + 𝑣23 → 𝑣22 − 𝑣𝑑 → 𝑣42 + 𝑣42 → 𝑣32 ≤
𝑣𝑑 → 𝑣23 + 𝑣23 → 𝑣22 − 𝑣𝑑 → 𝑣23 + 𝑣23 → 𝑣32 =

𝑣23 → 𝑣22 − 𝑣23 → 𝑣32 ≤ 1
𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

𝑣𝑑

Detailed theory and proof are given in the paper

HMPO Graph-Based Insertion

49

• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢 fails to meet the time limitation, do the rest
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices.

• Design SMDBoost algorithm.

• For each pair of driver and
request, we test one vertex for
insertion and prune the rest if
the time limitation cannot meet
with the bounded saving.

• Background and Motivation

• The Meeting-Point-based Online Ridesharing Problem

• Framework Overview

• Methods

• Experimental Evaluation

• Summary

Outline

50

• Road Network
• NYC (𝑉 =57,030, 𝐸 =122,337)

• Real-World Dataset
• Taxi Trips (yellow and green) in NYC (277,410 trip records)

• Synthetic Dataset
• Generated according to the distribution of NYC (100k to 1m trip records)

Experimental Settings

51

• Compared parameters

• 𝑒𝑟: the deadline coefficient.

• 𝑎𝑤: the capacity of workers.

• 𝛼: the weight for driving cost.

• 𝛽: the weight for walking cost.

• 𝑝𝑜: the ratio of penalty cost

• 𝑊 : number of workers

• 𝑅 : number of requests

Experimental Settings

52

• Tested Algorithms

• Traditional
• GreedyDP [1]: the state-of-art route planning algorithm using insertion. No demand-

related information is used.

• Kinetic Tree [2]: it saves all the possible routes for the assigned request using a structure
called Kinetic and inserts requests by traversing and updating the tree.

• Meeting-Point-Based
• BasicMP: It is an extension from GreedyDP by adapting MPs to solve the MORP problem.

• First Serve. A variant of BasicMP, where each request is directly assigned to the first
driver who can serve it.

• HSRP. It uses the HMPO Graph to improve the effectiveness of BasicMP without pruning.

Experimental Settings

53[1] Yongxin Tong, et al. 2018
[2] Shuo Ma, et al. 2013

Experimental Settings

54

Serve 21.4% to 29.9%
more requests

Response time < 0.08s

b
et

te
r b

etter
Performance of varying number of workers 𝑊

Experimental Settings

55

Serve 7.3% to 28.4%
more requests

Response time < 0.08s

b
et

te
r b

etter
Performance of varying number of requests 𝑅

• Background and Motivation

• Framework Overview

• The Cache Replacement Problem

• Theoretical Guarantees

• Experimental Evaluation

• Summary

Outline

56

• We formulate the online route planning problem with MPs mathematically,
namely MORP. We prove that it is NP-hard and has no algorithm with a
constant competitive ratio.

• We propose an algorithm to select MP candidates for riders, which is based
on a unified cost function considering the travel cost from additional walking.

• We propose a novel hierarchical structure of the road network, namely
hierarchical meeting-point oriented (HMPO) graph, to fasten the solution for
MORP.

• Based on the HMPO graph, we propose an effective and efficient insertor,
namely SMDB, to handle the requests in MORP.

Summary

57

Thank You!

58

The code and datasets
https://github.com/dominatorX/open.

	幻灯片 1: Online Ridesharing with Meeting Points
	幻灯片 2: Outline
	幻灯片 3: Ridesharing in the World
	幻灯片 4: Route Planning for Ridesharing
	幻灯片 5: New Mode: Meeting Points
	幻灯片 6: New Mode: Meeting Points
	幻灯片 7: New Mode: Meeting Points
	幻灯片 8: Problem of Ridesharing with Meeting Point (MP)
	幻灯片 9: Motivation
	幻灯片 10: Motivation
	幻灯片 11: Outline
	幻灯片 12: The Meeting-Point-based Online Ridesharing Problem
	幻灯片 13: The Meeting-Point-based Online Ridesharing Problem
	幻灯片 14: The Meeting-Point-based Online Ridesharing Problem
	幻灯片 15: The Meeting-Point-based Online Ridesharing Problem
	幻灯片 16: The Meeting-Point-based Online Ridesharing Problem
	幻灯片 17: The Meeting-Point-based Online Ridesharing Problem
	幻灯片 18: Outline
	幻灯片 19: Existing method - Insertion
	幻灯片 20: Adapt Insertion by Enumerating Meeting Points
	幻灯片 21: Framework
	幻灯片 22: Framework
	幻灯片 23: Outline
	幻灯片 24: Select Meeting Point Candidates
	幻灯片 25: Select Meeting Point Candidates
	幻灯片 26: Hierarchical Meeting-Point Oriented graph
	幻灯片 27: Hierarchical Meeting-Point Oriented graph
	幻灯片 28: Hierarchical Meeting-Point Oriented graph
	幻灯片 29: Hierarchical Meeting-Point Oriented graph
	幻灯片 30: Hierarchical Meeting-Point Oriented graph
	幻灯片 31: Hierarchical Meeting-Point Oriented graph
	幻灯片 32: Hierarchical Meeting-Point Oriented graph
	幻灯片 33: Hierarchical Meeting-Point Oriented graph
	幻灯片 34: Hierarchical Meeting-Point Oriented graph
	幻灯片 35: Hierarchical Meeting-Point Oriented graph
	幻灯片 36: Hierarchical Meeting-Point Oriented graph
	幻灯片 37: Hierarchical Meeting-Point Oriented graph
	幻灯片 38: Hierarchical Meeting-Point Oriented graph
	幻灯片 39: HMPO Graph-Based Insertion
	幻灯片 40: HMPO Graph-Based Insertion
	幻灯片 41: HMPO Graph-Based Insertion
	幻灯片 42: HMPO Graph-Based Insertion
	幻灯片 43: HMPO Graph-Based Insertion
	幻灯片 44: HMPO Graph-Based Insertion
	幻灯片 45: HMPO Graph-Based Insertion
	幻灯片 46: HMPO Graph-Based Insertion
	幻灯片 47: HMPO Graph-Based Insertion
	幻灯片 48: HMPO Graph-Based Insertion
	幻灯片 49: HMPO Graph-Based Insertion
	幻灯片 50: Outline
	幻灯片 51: Experimental Settings
	幻灯片 52: Experimental Settings
	幻灯片 53: Experimental Settings
	幻灯片 54: Experimental Settings
	幻灯片 55: Experimental Settings
	幻灯片 56: Outline
	幻灯片 57: Summary
	幻灯片 58: Thank You!

