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Ridesharing in the World

3

Uber Lyft DiDi

• Online platforms for ridesharing grows rapidly.
• Each driver can serve more than one request when their routes have common sub-routes



• Effective/efficient route planning strategy is highly demanded due to:
• A large number of dynamically arriving requests

• A large number of drivers

• A large number of possible routes allowing share

• Limited response time

Route Planning for Ridesharing
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New Mode: Meeting Points 
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• Requests are posted with source 
locations and destination locations

• Platform organizes drivers to pass these 
locations and serve riders 

Traditional route planning
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• Requests are posted with source 
locations and destination locations

• Platform organizes drivers to pass these 
locations and serve riders 

Traditional route planning
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However, due to the complex 
topology of the city road network,
some locations (e.g., A and B) are 
spatially close to each other but 
hard to access for drivers. 



New Mode: Meeting Points 

• Meeting points (MP for short) are introduced as alternative locations 
for pick-up/drop-off locations of requests.

• E.g., driver and riders now meet at D.
• Short walk (A→D) of riders, large overall profit!

Route planning with Meeting Points
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• Existing researches [1, 2] for MP are offline
• Inefficiency: cannot serve large-scale online applications

• MP is not well-explored in the industry
• Express Pool (Uber) encourages riders to walk to Express spots (meeting points) for 

efficient routing

• Inflexible: wait until a group of requests has a shareable route and pick up them 
together like at a bus station [3]

Problem of Ridesharing with Meeting Point (MP)
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[1] Mitja Stiglic , et al. 2015 
[2] Meng Zhao, et al. 2018
[3] Uber Express Just like a Bus. https://gizmodo.com/i-tried-uber-snew-pool-express-service-and-honestly-j-1823190462



• Some vertices are more convenient to come and go and thus “popular”
• E.g., vertices close to highways and downtown

• With flexible MPs, it is possible to serve more requests at or near those 
“popular” vertices, which makes them even more frequently used.

• These vertices serve as the skeleton of the road network
• Effectiveness: estimate and select these popular vertices

• Efficiency: fast algorithms especially on popular vertices

Motivation
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• The requirement for a road network skeleton motivates us to take 
advantage of 𝑘-skip cover 𝑉∗ [1], which is a selected subset of vertices to 
be the skeleton of a graph 𝐺.

Motivation
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[1] Yufei Tao, et al. 2011

• To minimize the size of 𝑉∗, we need to find the most “popular” and 
convenient vertices, which frequently appear in shortest paths, which 
coincide with our requirement for meeting points.

• We call a vertex set 𝑉∗  k-skip cover if for any shortest path of length k on a graph, 
there is at least one of its vertices ∈ 𝑉∗.



Outline

11

• Background and Motivation

• The Meeting-Point-based Online Ridesharing Problem

• Framework Overview

• Methods

• Experimental Evaluation

• Summary



• Drivers
• A set of 𝑛 drivers 𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑛

• Each is defined by 𝑤𝑖 = 𝑙𝑖 , 𝑎𝑖  with current location 𝑙𝑖 and capacity limitation 𝑎𝑖

• Requests
• A set of 𝑚 requests 𝑅 = 𝑟1, 𝑟2, … , 𝑟𝑛

• Traditionally, each is defined by 𝑟𝑗 = 𝑠𝑖 , 𝑒𝑖 , 𝑡𝑟𝑗 , 𝑡𝑝𝑗 , 𝑡𝑑𝑗 , 𝑝𝑗 , 𝑎𝑗 , where:
• 𝑠𝑖/𝑒𝑖 for source/destination locations; 
• 𝑡𝑟𝑗/𝑡𝑝𝑗/𝑡𝑑𝑗 for time of release/pick-up deadline/drop-off deadline;

• 𝑝𝑗 for rejection penalty;

• 𝑎𝑗 for capacity.

• With meeting point, an assigned request has 𝑝𝑖𝑗 , 𝑑𝑒𝑗 , 𝑤𝑝𝑗 , 𝑤𝑑𝑗  in addition, where:
• 𝑝𝑖𝑗/𝑑𝑒𝑗 for pick-up and drop-off locations

• 𝑤𝑝𝑗 , 𝑤𝑑𝑗 for time of riders walking before picked up and after dropped off.

• Traditional route planning:
• Assign each driver 𝑤𝑖 a route 𝑆𝑖, which is a sequence of 𝑠𝑗/𝑒𝑗  under the time and capacity constraints.
• Minimizing a unified cost of:

𝛼 

𝑤𝑖∈𝑊

𝐷 𝑆𝑤𝑖
 +  

𝑟𝑗∈ ത𝑅

𝑝𝑗

The Meeting-Point-based Online Ridesharing Problem
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𝑤𝑖 = 𝑙𝑖: 𝐵, 𝑎𝑖: 4
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We prove the MORP problem is NP-hard by reducing 
it from the basic route planning problem[1] for 
shareable mobility services. 

We further show that no deterministic nor randomized 
algorithm can guarantee a constant Competitive Ratio.

[1] Yongxin Tong et al. 2018
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𝑣55
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𝑣31

Existing method - Insertion
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Insertion is an effective local optimal algorithm for route planning, which has 
linear (𝑂 𝑆𝑖 ) time complexity [1].
It involves shortest path queries between the current route (𝑆𝑖) and inserted 
locations (𝑠𝑗 , 𝑒𝑗).

[1] Yongxin Tong et al. 2018
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By adapting insertion for MORP, it involves shortest path queries between the 
current route (𝑆𝑖) and all possible pairs of meeting points near (𝑠𝑗 , 𝑒𝑗).

If a vertex has 𝑘 meeting points on average, the computational cost increases by 
𝑘 × 𝑘 times, which is unacceptable.

𝑣51

𝑣61

3

3

3

3

3

3

3

3

𝑣21

𝑣14𝑣13𝑣12𝑣11

33

𝑣16𝑣15

3

𝑣41

3

3

3

3

3

𝑣17 𝑣19𝑣18

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

𝑣55

𝑣24

𝑣58

𝑣21

With Meeting Points, possible insertion location pairs 
are greatly increased (1 × 1 to 9 × 9) in the Figure.



Framework

21

Selecting optimal meeting points (MPs) online is time-consuming

1) Prepare MPs for each vertex offline to reduce the search space

2) Design data structure for faster queries.

Meeting points 

selection algorithm

MP MPMPV

Hierarchical Meeting-

Point Oriented graph

Off-line 

Pre-processing

 Convenient 

score for vertices
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Select Meeting Point Candidates

• Quantize how “convenient” a vertex is for transportation
• MP candidates should easily get to and conveniently reach other vertices.

• Given vertex 𝑢, define its 𝑛𝑟 nearest vertices as reference vertices 𝑛𝑜 𝑢 . 

• Equivalent Out Cost of 𝑢: the average distance towards its reference vertices

• Similarly, reverse the graph we can have Equivalent Inward Cost 



Expected cost 
from driving

Expected cost 
from walking

Select Meeting Point Candidates
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• Quantize how “convenient” a vertex is for transportation
• MP candidates should easily get to and conveniently reach other vertices.

• Now we can rank the candidate MPs 𝑣1, 𝑣2, … , 𝑣𝑛  of a vertex 𝑢 by Serving-Cost Score

𝑆𝐶𝑆 𝑢, 𝑣𝑖 = 𝛽 ⋅ 𝑆𝑃𝑝 𝑢, 𝑣𝑖 + 𝛼 𝐸𝐶𝐼 𝑣𝑖 + 𝐸𝐶𝑂 𝑣𝑖

Based on these statistics from shortest path queries, an 𝑂 𝑉  Local-
Flexibility-Filter Algorithm is proposed to select MPs for each vertex offline.



Hierarchical Meeting-Point Oriented graph

26

• With MPs, assigned routes can be concentrated on the convenient vertices

• We give the hierarchical order over the vertex set 𝑉:
• Defective vertices 𝑽𝒅𝒆 They are inconvenient to access.

• Core vertices 𝑽𝒄𝒐 They are used as MPs frequently.

• Sub-level vertices 𝑽𝒔𝒖   The remaining vertices are classified as sub-level vertices.



Hierarchical Meeting-Point Oriented graph

27

Defective vertices 𝑽𝒅𝒆

• We aim to remove the unwelcomed vertices in traditional ridesharing, which 
can be alternatively served by meeting points now. 

• We propose a method to avoid two potential costs from vertex removal:
• The detour cost A path containing removed vertex 𝑢 no longer exists.

• The inaccessibility cost The potential reject penalty of requests at the removed vertex.
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Hierarchical Meeting-Point Oriented graph
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Defective vertices 𝑽𝒅𝒆

• A 3-phase 𝑂(𝑁𝑙𝑜𝑔𝑁) 𝐷𝑉𝑆 algorithm is proposed with theoretical guarantee

𝑩

𝑭

𝑪

𝑬

𝑨

𝑫

13

28

18

15

22 31

20

(b) Graph for passenger
𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪𝑨

𝑽𝒅𝒆

(a) Graph for car
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𝑣21

𝑣31

𝑣41

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

A graph and its 2-skip cover 𝑽∗ 
(Any shortest path longer than 2 
contains at least one of its vertex)

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
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𝑣21

𝑣31

𝑣41

𝑣24

𝑣42

𝑣31

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

𝑣13

A graph and its 2-skip cover 𝑽∗ A car picks up 2 requests 
in the traditional mode

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.



Hierarchical Meeting-Point Oriented graph

31

𝑣21

𝑣31

𝑣41

𝑣24

𝑣42

𝑣31

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

𝑣13

𝑣24

𝑣42

𝑣31

𝑣13

𝑣23

A graph and its 2-skip cover 𝑽∗ A car picks up 2 requests 
in the traditional mode

A car picks up 2 requests 
in the meeting point mode 
(meet at 𝑣23)

Both of 𝒌-skip cover and meeting 
points expect “convenient” vertices 

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
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𝑣21

𝑣31

𝑣41

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

A graph and its 2-skip cover 𝑽∗ A car picks up 2 requests 
in the traditional mode

A car picks up 2 requests 
in the meeting point mode 
(meet at 𝑣23)

Meeting point -> more queries 
between 𝑘-skip cover 

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
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Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
• 𝑽𝒄𝒐 is a 𝒌-skip cover on the updated graph without 𝑉𝑑𝑒

• Proportion factor 𝜖 of vertices have at least one vertex 𝑢 ∈ 𝑉𝑐𝑜 as its MP candidate

Meeting point -> more queries 
between 𝑘-skip cover 

𝒌-skip cover -> faster inner queries to 
improve efficiency
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Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
• 𝑽𝒄𝒐 is a 𝒌-skip cover on the updated graph without 𝑉𝑑𝑒

• Proportion factor 𝜖 of vertices have at least one vertex 𝑢 ∈ 𝑉𝑐𝑜 as its MP candidate

Formulate as an integer 
linear program

Propose algorithm with 
theoretical bound on # of 𝑉𝑐𝑜



Hierarchical Meeting-Point Oriented graph

35

Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
• 𝑽𝒄𝒐 is a 𝒌-skip cover on the updated graph without 𝑉𝑑𝑒

• Proportion factor 𝜖 of vertices have at least one vertex 𝑢 ∈ 𝑉𝑐𝑜 as its MP candidate

𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪𝑨

𝑽𝒅𝒆

(a) Graph for car
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Core vertices 𝑽𝒄𝒐

• Select “convenient” vertices as the skeleton of the graph

• 𝑘-skip cover has good compatibility with the meeting point: use it as backbone.
• 𝑽𝒄𝒐 is a 𝒌-skip cover on the updated graph without 𝑉𝑑𝑒

• Proportion factor 𝜖 of vertices have at least one vertex 𝑢 ∈ 𝑉𝑐𝑜 as its MP candidate

𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪𝑨

(a) Graph for car

𝑽𝒅𝒆

𝑽𝒄𝒐

𝑽𝒔𝒖
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Graph construction

• Vertices: previously obtained 𝑉𝑑𝑒 , 𝑉𝑐𝑜, 𝑉𝑠𝑢

• Edges: since 𝑉𝑐𝑜 forms a 𝑘-skip cover,  we can build super edges among 
𝑉𝑐𝑜⋃𝑉𝑠𝑢 following existing theory [1]:
• 𝐸𝑐𝑐: super edges between core vertices

• 𝐸𝑐𝑐: super edges from core to sub-level vertices

• 𝐸𝑐𝑐: super edges from sub-level to core vertices

𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪

𝑽𝒅𝒆

𝑽𝒄𝒐

𝑽𝒔𝒖

[1] Yufei Tao, et al. 2011
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Graph construction

• Vertices: previously obtained 𝑉𝑑𝑒 , 𝑉𝑐𝑜, 𝑉𝑠𝑢

• Edges: since 𝑉𝑐𝑜 forms a 𝑘-skip cover,  we can build super edges among 
𝑉𝑐𝑜⋃𝑉𝑠𝑢 following existing theory [1]:
• 𝐸𝑐𝑐: super edges between core vertices

• 𝐸𝑐𝑐: super edges from core to sub-level vertices

• 𝐸𝑐𝑐: super edges from sub-level to core vertices

𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪

𝑽𝒅𝒆

𝑽𝒄𝒐

𝑽𝒔𝒖
𝑭𝑬

2

𝑫

4

3

3

76

𝑩 𝑪𝑨

𝑬𝒔𝒄

𝑬𝒄𝒔

𝑬𝒄𝒄

[1] Yufei Tao, et al. 2011
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Recall that we select MP Candidates (𝑴𝑪 𝒖 ) for each vertex 𝒖

• Vertices∈ 𝑀𝐶 𝑢  are reachable via short walking ⇒ they are close to each other

• One interesting problem is, if inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the 
time limitation, do the rest candidates help?
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Recall that we select MP Candidates (𝑴𝑪 𝒖 ) for each vertex 𝒖

• Vertices∈ 𝑀𝐶 𝑢  are reachable via short walking ⇒ they are close to each other

• One interesting problem is, if inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the 
time limitation, do the rest candidates help?

• ⇒ We define a new distance correlation, which bounds the time saving of 
switching from 𝑣 to any other vertices. 

• If deducting the saving still cannot meet the time limitation: 
• ⇒ prune the whole set 𝑀𝐶 𝑢 !
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Recall that we select MP Candidates (𝑴𝑪 𝒖 ) for each vertex 𝒖

• Vertices∈ 𝑀𝐶 𝑢  are reachable via short walking ⇒ they are close to each other

• One interesting problem is, if inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the 
time limitation, do the rest candidates help?

• ⇒ We define a new distance correlation, which bounds the time saving of 
switching from 𝑣 to any other vertices. 

• If deducting the saving still cannot meet the time limitation: 
• ⇒ prune the whole set 𝑀𝐶 𝑢 !
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• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the time limitation, do the rest 
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices. 
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣32

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣22
𝑣21

𝑣31

𝑣41

𝑣𝑑

𝑣23

𝑣32

𝑣42

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

𝑀𝐶(𝑣22)
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• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the time limitation, do the rest 
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices. 
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣22
𝑣21

𝑣31

𝑣41

𝑣𝑑

𝑣23

𝑣32

𝑣42

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

𝑀𝐶(𝑣22) Traditionally, we need to 
derive all the time costs from 
graph to 𝑣22 and 𝑣23 though 
they are close to each other
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• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the time limitation, do the rest 
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices. 
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣22
𝑣21

𝑣31

𝑣41

𝑣𝑑

𝑣23

𝑣32

𝑣42

𝑣14𝑣13𝑣12𝑣11

3

3

3

3

3

𝑣𝑑

𝑀𝐶(𝑣22)

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

Luckily, the 𝑘-skip cover “cut 
off” the shortest paths using the 
core vertices, which enables us 

to bound the time-saving.
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• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the time limitation, do the rest 
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices. 
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣𝑑

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

Cut off from core vertices:
If 𝑣𝑑 shares no super edges with 

𝑣21, 𝑣23, 𝑣31, 𝑣42 , any shortest 
paths from 𝑣𝑑 to 𝑣32 and 𝑣22

need to pass the 4 core vertices
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• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the time limitation, do the rest 
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices. 
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣𝑑

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

The distance from the 4 core vertices 
𝑣21, 𝑣23, 𝑣31, 𝑣42  to 𝑣32 and 𝑣22

2

1

1

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣31

𝑣42

𝑣21

𝑣23

𝑣322

2

1

1

2
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• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the time limitation, do the rest 
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices. 
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣𝑑

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

The distance from the 4 core vertices 
𝑣21, 𝑣23, 𝑣31, 𝑣42  to 𝑣32 and 𝑣22

2

1

1

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣31

𝑣42

𝑣21

𝑣23

𝑣322

2

1

1

2
𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

−1

−1

1

1

Calculate the difference for 
each core vertices, the time 

saving is bounded by 1 here.
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• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the time limitation, do the rest 
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices. 
• A driver want to serve a request at 𝑣22, which has MP candidates 𝑣22, 𝑣23

• If 𝑣22 exceeds the time limitation for 3 minutes, do we still need to test 𝑣32?

𝑣𝑑

𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

If the shortest path from 𝑣𝑑 to 𝑣32 is passed through 
𝑣42, the time saving is

𝑣𝑑 → 𝑣23 + 𝑣23 → 𝑣22 − 𝑣𝑑 → 𝑣42 + 𝑣42 → 𝑣32 ≤
𝑣𝑑 → 𝑣23 + 𝑣23 → 𝑣22 − 𝑣𝑑 → 𝑣23 + 𝑣23 → 𝑣32 = 

𝑣23 → 𝑣22 − 𝑣23 → 𝑣32 ≤ 1
𝑣31

𝑣42

𝑣22

𝑣21

𝑣23

𝑣32

𝑣𝑑

Detailed theory and proof are given in the paper
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• If inserting a candidate 𝑣 ∈ 𝑀𝐶 𝑢  fails to meet the time limitation, do the rest 
candidates help?

• Bounds the time saving of switching from 𝑣 to any other vertices. 

• Design SMDBoost algorithm. 

• For each pair of driver and 
request, we test one vertex for 
insertion and prune the rest if 
the time limitation cannot meet 
with the bounded saving.



• Background and Motivation

• The Meeting-Point-based Online Ridesharing Problem

• Framework Overview

• Methods

• Experimental Evaluation

• Summary

Outline
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• Road Network
• NYC ( 𝑉 =57,030, 𝐸 =122,337)

• Real-World Dataset
• Taxi Trips (yellow and green) in NYC  (277,410 trip records)

• Synthetic Dataset
• Generated according to the distribution of NYC  (100k to 1m trip records)

Experimental Settings

51



• Compared parameters

• 𝑒𝑟: the deadline coefficient.

• 𝑎𝑤: the capacity of workers.

• 𝛼: the weight for driving cost.

• 𝛽: the weight for walking cost.

• 𝑝𝑜: the ratio of penalty cost

• 𝑊 : number of workers

• 𝑅 : number of requests

Experimental Settings

52



• Tested Algorithms

• Traditional
• GreedyDP [1]: the state-of-art route planning algorithm using insertion. No demand-

related information is used.

• Kinetic Tree [2]: it saves all the possible routes for the assigned request using a structure 
called Kinetic and inserts requests by traversing and updating the tree.

• Meeting-Point-Based
• BasicMP: It is an extension from GreedyDP by adapting MPs to solve the MORP problem.

• First Serve. A variant of BasicMP, where each request is directly assigned to the first 
driver who can serve it.

• HSRP. It uses the HMPO Graph to improve the effectiveness of BasicMP without pruning.

Experimental Settings

53[1] Yongxin Tong, et al. 2018
[2] Shuo Ma, et al. 2013
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Serve 21.4% to 29.9% 
more requests 

Response time < 0.08s
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Performance of varying number of workers 𝑊
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Serve 7.3% to 28.4% 
more requests 

Response time < 0.08s

b
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etter
Performance of varying number of requests 𝑅



• Background and Motivation

• Framework Overview
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• Theoretical Guarantees

• Experimental Evaluation

• Summary
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• We formulate the online route planning problem with MPs mathematically, 
namely MORP. We prove that it is NP-hard and has no algorithm with a 
constant competitive ratio.

• We propose an algorithm to select MP candidates for riders, which is based 
on a unified cost function considering the travel cost from additional walking.

• We propose a novel hierarchical structure of the road network, namely 
hierarchical meeting-point oriented (HMPO) graph, to fasten the solution for 
MORP.

• Based on the HMPO graph, we propose an effective and efficient insertor, 
namely SMDB, to handle the requests in MORP.

Summary

57



Thank You!

58

The code and datasets
https://github.com/dominatorX/open.
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