
A New Class of Polynomial Activation Functions of Deep
Learning for Precipitation Forecasting

Jiachuan Wang
Hong Kong University of Science and

Technology
Hong Kong, China
jwangey@cse.ust.hk

Lei Chen
Hong Kong University of Science and

Technology
Hong Kong, China
leichen@cse.ust.hk

Charles Wang Wai Ng
Hong Kong University of Science and

Technology
Hong Kong, China
cecwwng@ust.hk

ABSTRACT
Precipitation forecasting, modeled as an important chaotic system
in earth system science, is not explicitly solved with theory-driven
models. In recent years, deep learning models have achieved great
success in various applications including rainfall prediction. How-
ever, these models work in an image processing manner regardless
of the nature of a physical system. We found that the non-linearity
relationships learned by deep learning models, which mostly rely
on the activation functions, are commonly weighted piecewise con-
tinuous functions with bounded first-order derivatives. In contrast,
the polynomial is one of the most widely used classes of functions
for theory-driven models, applied to numerical approximation, dy-
namic system modeling, etc.. Researchers started to use the polyno-
mial activation functions (Pacs in short) for neural networks from
the 1990s. In recent years, with bloomed researches that apply deep
learning to scientific problems, it is weird that such a powerful
class of basis functions is rarely used. In this paper, we investigate
it and argue that, even though polynomials are good at information
extraction, it is too fragile to train stably. We finally solve its seri-
ous data flow explosion problem with Chebyshev polynomials and
prepended normalization, which enables networks to go deep with
Pacs. To enhance the robustness of training, a normalization called
Range Norm is further proposed. Performance on synthetic dataset
and summer precipitation prediction task validates the necessity of
such a class of activation functions to simulate complex physical
mechanisms. The new tool for deep learning enlightens a new way
of automatic theoretical physics analysis.
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• Applied computing → Physical sciences and engineering;
• Computing methodologies → Artificial intelligence.
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1 INTRODUCTION
Deep learning, a large scale machine learning architecture, shows
powerful ability in real-world applications, such as image process-
ing [14, 33, 51], natural language processing [29, 49, 52], and rec-
ommendation systems [11, 55, 58].

Precipitation, especially the heavy summer rainfall, has great im-
portance for the prevention of natural disasters and the production
of agriculture and industry [50]. As a famous chaotic system, the
theories of rainfall are still not explicitly resolved such as convection
[57]. In the widely used WRF (Weather Research and Forecasting)
model[47], rainfall is divided into different cases according to sea-
son and location and solved with empirical model and parameter
setting [16, 19, 20]. In recent years, deep learningmodels are applied
to precipitation prediction problems based on radar maps, which is
treated as an alternative indicator [45, 46, 53, 54]. However, these
models process radar images similar to video prediction task in a
computer vision (CV) mode, which do not engage other weather
data and omit the underlying physical relationships.

To simulate complex systems such as precipitation, deep learning
models combine linear cells such as fully-connected layer and con-
volutional layer with non-linear operators, mainly provided by the
class of module called activation functions. Researchers have paid
great efforts to analyze and design different activation functions.
We can divide the widely used activation functions into two major
clusters, (1) the gate-like functions. These functions map the input
into limited ranges (e.g. [0, 1] and [−1, 1]), such as sigmoid function,
tanh function, and softsign function. (2) Nonsaturating activation
functions, which do not approximate to a constant when the in-
put goes larger, such as Relu, leaky relu, elu, and selu functions
[9, 31, 39]. Most of them are asymptotically linear with bounded
first-order derivatives. For many fields such as image processing
and language processing, using only asymptotically linear functions
is reasonable, as vectors for pixels and words are of dimensional
homogeneity. It makes sense to model the effects of input features
on the output as a weighted sum with functions like relu and leaky
relu. However, the inputs of physical modeling are heterogeneous.
Their relationships can be much more complex, such as multiply
and exponent. Based on these facts, we propose an example to
illustrate our motivation.

Example 1.1. Convolutional Neural Networks (CNN) is one of
the most widely used layers of deep learning models, which outputs
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Figure 1: An Illustrative Example

the weighted sum of feature dimensions in each kernel. Figure.1
illustrates an application of CNN in an image processing task. We
display a CNN kernel that learns to extract vertical edge as a local
feature, which could be further used in detecting high-level features
such as hair and outline. The sample with pixels in Figure.1a for
a CNN kernel with shape= 3 × 3 is an input with a vertical edge.
The kernel weight in Figure.1b will detect this property by giving a
large output. The weighted sum of input pixels 𝑎1 to 𝑎9 effectively
detects the vertical edge; however, it hardly provides an intuitive
clue for edge detection by adding a feature of multiplication (e.g.
𝑎1 × 𝑎3) and exponent (e.g. 𝑎𝑎62 ) between inputs.

In contrast, for physical problems including precipitation fore-
casting, there are various widely accepted nonlinear physical rela-
tionships. For example, to calculate the pressure 𝑃 given the amount
of substance 𝑛 and absolute temperature 𝑡 according to ideal gas
law, which is used in WRF[47] model for rainfall:

𝑃 =
𝑛𝑅𝑡

𝑉
,

we need multiplication for inputs 𝑛 and 𝑡 other than linear or sub-
linear functions. A quadratic polynomial module can perfectly do
the task by learning parameters𝑊 =

[
0 0 0 𝑅

𝑉
0 0

]
, so that

𝑃 =𝑊
[
1 𝑛 𝑡 𝑛𝑡 𝑛2 𝑡2

]T
=
𝑛𝑅𝑡

𝑉

This fact raises an interesting problem: are we misled by the
activation functions in other fields while wemodel the com-
plex non-linear functionality in the physical system of pre-
cipitation, which could be a detour or even a dead-end to-
wards the target?

As polynomials are served as one of the most important basis
functions in science and engineering for dozens of years, such as ap-
proximation [43], simulation of dynamic system [28], etc., we focus
on a class of activation functions, named as Polynomial-activation
functions (Pacs in short), aiming to powerfully capture the complex
non-linearity of physical models. In contrast with the popularity
of deep learning with multiple layers, we found that Pacs are stud-
ied from 1990s but rarely used nowadays and mainly applied to
networks with single hidden layer [34, 37, 38]. We conducted ex-
periments with Pacs and argue that, deep network is hard to train
stably with them. Compared with saturating functions, a polyno-
mial approximator is nonsaturating and without bounded first-
nor even second-order derivatives, which grows more aggressively
with larger inputs. This property makes Pacs greatly vulnerable to
data flow explosion problems. Tons of experiments are conducted
directly using polynomial activation functions or append normal-
ization after 𝑃𝑎𝑐s, which results in exploded loss during training. In
this paper, the issue is handled in two phases. We first design 𝑃𝑎𝑐s

based on the Chebyshev polynomials of the first kind, which are
the “extremal" polynomials for various properties in approximation
theory [44]. With input in the domain [−1, 1], Chebyshev poly-
nomials output features in the same range. On the other hand, to
feed such a restricted input to 𝑃𝑎𝑐s, we prepend other than append
normalization to 𝑃𝑎𝑐s so that the input range is narrowed down for
stable data propagation. A new normalization called Range Norm
is proposed to further enhance the robustness.

To validate the effectiveness of our 𝑃𝑎𝑐s and Range Norm to
approximate nonlinear functions such as polynomials, experiments
on a synthetic dataset are conducted. The result shows that 𝑃𝑎𝑐s
outperform various activation functions while its approximation
ability is greatly improved with Range Norm. To deal with the spa-
tiotemporal data, previous papers designed a class of modules called
ConvRNN, which has shown a powerful effect on handling these
tasks [45, 46, 53, 54]. We apply 𝑃𝑎𝑐s to these ConvRNNs, which
serve as the activation functions after their inner convolutions of
state and input. The 𝑃𝑎𝑐s-based ConvRNNs are tested in the sum-
mer precipitation prediction task based on a benchmark HKO-7
[46] with spatiotemporal radar echo data. The dataset is further
enhanced with heterogeneous WRF data to gain the amount of
rainfall in the next few hours [47]. In fact, previous precipitation
forecasting models refined by 𝑃𝑎𝑐s and Range Norm all achieve
great improvement on performance and validate the effectiveness
of our modules.

Here we summarize our main contributions:
• We apply and investigate the Polynomial-activation func-
tions (Pacs) to boost the simulation of physical processes
using deep learning model. We find that the data flow explo-
sion problem is serious when the network goes deep.

• We tackle the training instability problem of Pacs-based deep
learning model with 1) Chebyshev polynomials as basis func-
tions, and 2) placing the normalization before polynomial
operators for stable data propagation.

• A new normalization Range Norm is designed for robust
training with 𝑃𝑎𝑐s in Section.3.

• We generate synthetic datasets and validate the effectiveness
of 𝑃𝑎𝑐s and Range Norm compared with commonly used
activation functions and layer normalization.

• We conduct extensive experiments on the rainfall prediction
task by applying 𝑃𝑎𝑐s and Range Norm to various models
and show the effectiveness of 𝑃𝑎𝑐s in Section.4.

We review related works in Section.2 and conclude this paper in
Section.5.

2 BACKGROUND AND RELATEDWORKS
2.1 Precipitation Forecasting with Deep

Learning
Precipitation, which is one of the most important research fields in
earth science [40], affects civil production and living all over the
world [50, 57]. Traditionally, the domain experts from physics and
engineering construct numerical models such as WRF (Weather
Research and Forecasting) model [47] based on their domain knowl-
edge as theory-driven solutions. However, lots of underlying mech-
anisms are still unclear [57]. Model designs and parameter settings
still rely on empirical conjectures [16, 19, 20]. On the other hand,
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coupling multiple weather processes to the weather system results
in a larger and larger structure, which results in high computation
cost and huge accumulation error [47].

Deep learning, serving as a data-driven black box, shows a pow-
erful effect to handle these problems in recent years. As the radar
image is a strong indicator for precipitation, Shi et al. first pro-
pose the encoding-forecasting framework and Convolutional LSTM,
which combines CNN and RNN to handle spatiotemporal image
series, to predict accurate radar images in the next 2 hours as precip-
itation nowcasting [45]. Their framework and modules are further
improved. A module called Trajectory Gated Recurrent Unit (Traj-
GRU) is proposed with a learned convolution kernel as the hidden
state could be aggregated along certain trajectories such as the Ty-
phoon Eye [46]. Wang et al. integrate spatiotemporal information
with additional memory state in the recurrent neural network as
PredRNN, which is updated by both low-level stacked layer and
state in previous time step [53]. A module called Memory In Mem-
ory (MIM) is also applied to radar image prediction, which adds
non-stationary and stationary memory cells in PredRNN [54]. It
models the target system as a non-stationary process of polynomial,
which is approximated with state differencing as degree reduction.
In contrast, our activation functions 𝑃𝑎𝑐s increase the degree of
polynomials to model more complex physical interrelationships in
the precipitation system.

While deep learning is applied to various earth science problems
[7, 36, 56], integrating theory-driven and data-driven methods is
another important direction to handle these earth science problems
[5, 18, 27]. Bezenac et al. design a hybrid model, which uses the
framework of a physical model for water surface temperature with
its motion field simulation part replaced by an encoder-decoder
deep learning model [5]. Gentine et al. use a neural network to de-
rive intermediary rainfall-related variables including longwave and
shortwave heating tendency, which is further fed into a numerical
model for convection rain [18].

However, those models are framework-wise combinations of
physical knowledge and deep learning. To be more specific, deep
learning models are used to enrich or replace some or all blocks in
the theory-driven numerical models, while the structures of applied
deep learningmodels are simply duplicated from those used for NLP
and CV tasks, such as FNN and CNN with variants of relu (e.g. elu,
selu, leaky relu, etc.) and gated-like functions (e.g. sigmoid, tanh,
softmax, etc.) as activation functions [9, 31, 39]. These modules
may not match with the functionality of the physical system for
precipitation, which limits their ability of approximation.

In contrast, Pac is a class of meta operators that has been un-
derestimated while polynomial functions are used everywhere in
theory-driven models [28, 43]. Lee and Jeng [34] feed inputs into
all the product terms of Chebyshev polynomials with degrees no
larger than 𝑝 (𝑜) as augmentation and pass them through one fully-
connected layer. Ma and Khorasani [37] propose a single-layer
network with Hermite polynomials as activation functions. Their
model is trained incrementally in order to use higher degree poly-
nomials to decrease residual error. López-Rubio et al. [38] propose
piecewise Pacs, which adapts the separation nodes for each degree
of polynomial. It is limited to a single hidden layer network for
the differentiability issue. These applications of Pacs are limited to
single hidden layer. With experiments, we found that deep network

is not converged with Pacs even after appending normalization. Our
paper solves this problem using a new class of 𝑃𝑎𝑐s with specially
selected basis functions and prepended normalization layer to pave
a highway for precipitation and even physical modeling.

2.2 Convolutional Recurrent Neural Network
Recurrent Neural Network (RNN) and its variants are proposed for
series data [8, 22]. The simplest RNN can be written as:

𝑠𝑡 = Φ(𝑊𝑥 · 𝑥𝑡 +𝑊𝑠 · 𝑠𝑡−1)
𝑦𝑡 = 𝜎 (𝑊𝑦 · 𝑠𝑡 )

(1)

where the hidden state 𝑠𝑡 is updated every step based on input 𝑥𝑡
to generate output 𝑦𝑡 .𝑊𝑥 ,𝑊𝑠 , and𝑊𝑦 are learnable parameters
operated with tensors by matrix multiplication ‘·’. Φ(·) and 𝜎 (·) are
activation functions. Variants of RNNs involve more hidden states
with complex interactions.

Convolutional Recurrent Neural Network (ConvRNN) is a class
ofmodules to handle spatiotemporal data such as radar echo datasets,
including ConvLSTM, ConvGRU, ST-LSTM, MIM, etc. [45, 46, 53,
54]. The temporal relationships are captured by an RNN. In each
step, the input is a 2-dimensional image instead of a vector or scalar.
In ConvRNN, the input is operated by convolution. The module
is widely used for image processing[33, 51]. For example, we can
modified the original RNN in Equation.1 to:

𝑆𝑡 = Φ(𝑊𝑥 ∗ 𝑋𝑡 +𝑊𝑠 ∗ 𝑆𝑡−1)
𝑌𝑡 = 𝜎 (𝑊𝑦 ∗ 𝑆𝑡 )

(2)

where ‘∗’ refers to the convolution operator. State 𝑆𝑡 , input 𝑋𝑡 , and
output 𝑌𝑡 are matrices. In this way, researchers adapt various RNN
models to ConvRNN, such as ConvLSTM and ConvGRU [45, 46].
Spatiotemporal states and complex interactions are added to further
improve them [53, 54]. In our paper, 𝑃𝑎𝑐s are applied to the state
and input convolutions in these ConvRNNs.

2.3 Approximation Ability of Deep Learning
Early in the 1980s, many researchers investigated the approxima-
tion ability of a multilayer feedforward perceptron (MLP) model
through the theory of density [17, 21, 24, 26]. Cybenko first showed
the universal approximation ability of a single hidden layer percep-
tron with sigmoidal functions as the activation function [12]. After
that, many works extended the ranges of activation functions with
universality [2, 23, 41, 48]. Leshno et al. prove that a single hidden
layer MLP model can approximate any function if and only if its
activation function is nonpolynomial [35]. Note that this theory
does not ruin the power of a polynomial operator in deep learning.
The universality of nonpolynomial functions is proven by spanning
to different degrees of polynomials and applying Stone-Weierstrass
Theorem for approximation [10]. To represent a linear space of
algebraic polynomials of higher degree, a single hidden layer per-
ceptron needs more hidden units [2]. A deep learning model with
polynomial activation functions can be universal with enough num-
ber of layers [13], which is another direction of design network
compared with using more hidden units [32].

Another important point is that, the existence of a universal
approximator does not imply the hardness of training such a model.
Many earliest proved activation functions with universality are not
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commonly used nowadays, such as exponential and trigonomet-
ric functions [17, 48]. On the contrary, lots of research fields use
polynomials to approximate complex systems [28, 43]. In addition,
combining polynomial modules with the widely used piecewise
linear activation functions results in piecewise polynomial approx-
imation, which also shows great power in various applications
[6, 15]. These successful implementations motivate us to refine the
application of Pacs in deep learning models.

3 PROBLEM DEFINITION AND SOLUTION
3.1 Precipitation Forecasting Task
In this paper, we focus on the precipitation forecasting task with
heterogeneous spatiotemporal weather data. At each time step
𝑡 ∈ 𝑇 , we haveweather data from an area cut into𝐻×𝑊 grids. There
are two types of data sources. One is the radar image for rainfall,
which can be represented as a tensor 𝑋𝑡 ∈ R𝐻×𝑊 ×1. Another is
the simulation result from the WRF model, which covers 𝐷 types
of weather data with shape 𝐴𝑡 ∈ R𝐻×𝑊 ×𝐷 . Given 𝑡𝑖𝑛 time clips of
radar image and WRF data, 𝑋1, 𝑋2, · · · , 𝑋𝑡𝑖𝑛 and 𝐴1, 𝐴2, · · · , 𝐴𝑡𝑖𝑛 ,
precipitation forecasting task requires us to find a model to predict
the next 𝑡𝑜𝑢𝑡 clips of radar images 𝑋𝑡𝑖𝑛+1, 𝑋𝑡𝑖𝑛+2, · · · , 𝑋𝑡𝑖𝑛+𝑡𝑜𝑢𝑡 .

3.2 Pacs
As mentioned in Section.2, polynomial operators are rarely applied
to neural networks. In the following subsections, we first formally
define our 𝑃𝑎𝑐s based on Chebyshev polynomials with prepended
normalization. Then we clarify our motivation to use Chebyshev
polynomials based on the drawbacks and experimental results of
other 𝑃𝑎𝑐s. Finally, we discuss the advantages of prepending Range
Norm layer for 𝑃𝑎𝑐s.

Given the output 𝑋 from a layer of a linear neural network, such
as FNN and CNN layer, an activation function 𝜎 is added after it as
a mapping:

𝜎 : 𝑋 → 𝑌 (R𝑛 → R𝑛), (3)

where 𝜎 is applied pointwise so that input and output are of the
same shape. We denote our 𝑃𝑎𝑐s of degree 𝑛 as 𝑝𝑛 . The output of
𝑝𝑛 can be written as:

𝑌 = 𝑝𝑛 (𝑋 ) = 𝑇𝑛 (𝑁𝑜𝑟𝑚(𝑋 )), (4)

where𝑇𝑛 is the Chebyshev polynomials of the first kind with degree
𝑛 and 𝑁𝑜𝑟𝑚 is the normalization. As 𝑃𝑎𝑐s are more powerful but
furious to extract features, we further design a new normalization
called Range Norm 𝑅𝑁 for stable data propagation. Formally,

𝑅𝑁 (𝑋 ) =


𝑋 if 𝑉𝑎𝑟 (𝑋 ) = 0;
2𝑋 −𝑚𝑎𝑥 (𝑋 ) −𝑚𝑖𝑛(𝑋 )

𝑚𝑎𝑥 (𝑋 ) −𝑚𝑖𝑛(𝑋 ) otherwise,
(5)

where𝑚𝑖𝑛(𝑋 ) and𝑚𝑎𝑥 (𝑋 ) are the smallest and the largest value
of the input 𝑋 . 𝑉𝑎𝑟 refers to the variance, where 𝑉𝑎𝑟 (𝑋 ) = 0 is a
special case that all the input features are of the same value. The
idea of designing the Range Norm is to make the output strictly fall
into the range [−1, 1]. It is inspired by the idea of standardization
which is used for data processing.

3.3 Why Chebyshev Polynomials
Compared with the deterministic approaches for parametric ap-
proximation, deep learning does not only require a model of high
approximation ability, but also a model that could be trained stably
and effectively. We have conducted experiments for multiple types
of polynomial functions and different ways to combine them with
normalizations and regularizations. Most of them are failed to be
trained stably and result in overflow quickly. For more detailed
descriptions, please refer to subsection 4.2. Finally, we find Cheby-
shev polynomials as an excellent class of functions for a stable
training process combined with a prepended normalization module.
Chebyshev polynomials of degree 𝑛, denoted as 𝑇𝑛 , can be defined
in a recurrence relation [44]:

𝑇0 (𝑥) = 1,
𝑇1 (𝑥) = 𝑥,

𝑇𝑛+1 (𝑥) = 2𝑥𝑇𝑛 (𝑥) −𝑇𝑛−1 (𝑥)
(6)

For input 𝑥 ∈ [−1, 1], Chebyshev polynomials can be expressed
in trigonometric form [44], 𝑇𝑛 (𝑐𝑜𝑠𝛼) = 𝑐𝑜𝑠 (𝑛𝛼) with 𝑐𝑜𝑠𝛼 = 𝑥 . For
example:

𝑐𝑜𝑠 (0 · 𝛼) =1 ⇒ 𝑇0 (𝑥) =1,
𝑐𝑜𝑠 (1 · 𝛼) =𝑐𝑜𝑠𝛼 ⇒ 𝑇1 (𝑥) =𝑥,
𝑐𝑜𝑠 (2 · 𝛼) =2𝑐𝑜𝑠2𝛼 − 1 ⇒ 𝑇2 (𝑥) =2𝑥2 − 1

Based on the above equations, one can conclude the following
two properties of 𝑇𝑛 (𝑥) when 𝑥 ∈ [−1, 1].

• 𝑇𝑛 (𝑥) has 𝑛 roots in the range [−1, 1], 𝑥 = 𝑐𝑜𝑠
(2𝑘−1)𝜋

2𝑛 , 𝑘 =

1, 2, · · · , 𝑛. This can be varified through the trigonometric
form as 𝑇𝑛 (𝑥) = 𝑐𝑜𝑠 (𝑛𝛼) = 𝑐𝑜𝑠 (𝑛 (2𝑘−1)𝜋

2𝑛 ) = 0. As a polyno-
mial function of degree 𝑛 has exactly 𝑛 roots, all the roots of
𝑇𝑛 are located in [−1, 1].

• The maximal absolute value of 𝑇𝑛 (𝑥) in the range [−1, 1] is
1. Similarly, from the trigonometric form, we can conclude
that |𝑇𝑛 (𝑥) | = |𝑇𝑛 (𝑐𝑜𝑠𝛼) | = |𝑐𝑜𝑠 (𝑛𝛼) | ≤ 1.

With these two properties, Chebyshev polynomial works as a
very stable mapping in the range of [−1, 1] for data propagation.
With the help of normalization, the output of our Pacs takes the
advantage of a polynomial operator and conquers the vulnerability
to data explosion.

Another important feature of the Chebyshev polynomials is that,
in the domain [−1, 1], among all the polynomials of degree 𝑛 with
absolute value bounded by 1, 𝑇𝑛 has the largest possible leading
coefficient [44]. This fact leads to a more powerful mapping with
larger first-order derivatives, where 𝑇 ′

𝑛 (1) = 𝑛2. With the furious
growth of Chebyshev polynomials out of domain [−1, 1], one can
see the importance of a prepended Range Norm, which strictly
narrows down the scale to [−1, 1] and guarantees stability.

Note that previous paper [37] emphasizes that Hermite poly-
nomials are orthogonal over the interval (−∞,∞) and thus better
than Chebyshev polynomials, which is orthogonal over the interval
[−1, 1]. They argue that a confined range of input could hurt the
ability of approximation. However, concrete proof and comparison
are still missing. We show that 𝑃𝑎𝑐s work well at the approximation
for polynomials after normalization, where stricter confined input
range even greatly improved the results in subsection 4.1.
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3.4 Why Prepended Range Norm
Normalization layers, which are proposed to handle the problem
called internal covariate shift, make data propagate robustly and
speed up the training process [25]. Compared with batch normal-
ization which is usually used for CNN, layer normalization was
proposed for RNN to make the features of each group with nor-
malized mean and standard deviation [3]. This process sacrifices
the distribution information (mean and std) to construct a smooth
solution space for training. As mentioned above, polynomials are
powerful in approximation but fragile during training. For Cheby-
shev polynomials which serve as a stable mapping function from
domain [−1, 1] to [−1, 1], a prepended normalization can press the
range of input close to 0, such as layer normalization. However,
values out of [−1, 1] still exist in the output of layer normalization.
In contrast, range normalization output values in [−1, 1] strictly.
This process could lose more information but greatly improves the
stability. Our experiments also validate this idea.

Most of the implementations place normalizations after activa-
tion functions to refine the final output. In contrast, our normal-
ization is added before the Chebyshev polynomial operators. As
a prepended normalization limits the scale of input, Chebyshev
polynomial operators can output a stable data flow automatically.
We also conduct experiments with appended normalization, which
results in more and more skew distribution of output and fast data
explosion during training.

4 EXPERIMENTAL STUDY
We make our code publicly available with finetuned parameters on
Github [1]. We also set a fixed random key and train the models
deterministically. All the results can be repeated exactly with the
same server and python version.

4.1 Synthetic Dataset
Asmentioned in Section.2, we argue that traditional activation func-
tions are not powerful to learn complex non-linear systems such as
physical problems. As polynomial functions are common in the gov-
erning equations of all kinds of research fields, we rely on 𝑃𝑎𝑐s to
capture these functionalities. Here, we construct a synthetic dataset
to validate that, with the help of Range Norm, 𝑃𝑎𝑐s can outperform
various activation functions in learning the polynomials.
Dataset. Each input sample has 𝑑 dims, randomly generated from
a uniform distribution in the range [−1, 1]. Its output is a multi-
variable polynomial, of which terms are with weights uniformly
selected from [−𝑟𝑤 , 𝑟𝑤] and with degrees up to 3 and 4.
Model and Implementation Details. All the deep learning mod-
els are of ℎ𝑢 hidden units. The input is fed into 𝑛𝑙 fully-connected
layers for embedding, where the first layer is of size 𝑑 × ℎ𝑢 and the
following layers are of sizes ℎ𝑢 × ℎ𝑢 . Each layer is appended by an
activation function 𝑓 with normalization. Resnet is used for each
layer except for the first layer. Finally, a fully-connected layer of size
ℎ𝑢 × 1 maps the embedding to the output without any activation
fuction.

The parameters we tested are listed in Table.1. 𝑃𝑎𝑐s of degree 2
and 3 are tested, denoted as 𝑃𝑎𝑐2 and 𝑃𝑎𝑐3.

We use MSE (
∑𝑁

𝑖=1 (𝑌𝑖−�̃�𝑖 )2
𝑁

) as the metric. As each combination of
𝑓 and normalization has 16 subtasks, we rank the 10 combinations

Table 1: Compared Settings For Synthetic Dataset.

Parameters Description Settings
𝑑 number of input variables 8
ℎ𝑢 number of hidden units [8, 16, 32, 64]
𝑛𝑙 number of embedding layers [2, 3, 4, 5]
𝑟𝑤 range of the weight of objective function 5
𝑓 activation function used Relu, Sigmoid, SoftPlus, Pac2, Pac3

norm type of normalization used Layer Norm, Range Norm

by MSE from 1 to 10 (Rank=1 for the best) for each task and derive
the average rank for evaluation. Section A in the appendix shows
more details about training.
Experimental Results. We show the performance of combina-
tions of activation functions and normalizations for the approxima-
tion of polynomials of degree 3 in Table.2 and degree 4 in Table.3.

The performances of our 𝑃𝑎𝑐s (𝑃𝑎𝑐2 and 𝑃𝑎𝑐3) with Range Norm
rank the top 2 in both the approximations of polynomials of degree
3 and 4, which are marked with bold font and underline. In addi-
tion, 𝑃𝑎𝑐2 with Layer Norm gets the third-best rank for the target
polynomial of degree 3 (3.62 compared with other scores ≥ 4.00)
and 4 (2.88 compared with other scores ≥ 4.44). 𝑃𝑎𝑐3 works poorly
at both tasks with Layer Norm, which results in extremely large
losses (≥ 100) sometimes. This is due to the instability as 𝑃𝑎𝑐3 is
of a higher degree. In contrast, the results of 𝑃𝑎𝑐s are significantly
improved with Range Norm. 𝑃𝑎𝑐3 even ranks the top-1 in both
tasks. This indicates that activation functions of the higher degree
of polynomials are more powerful for feature extraction as long as
the stability is guaranteed.

4.2 Precipitation Forecasting
Dataset. Deep learning for precipitation forecasting based on large
size radar echo data is first studied using the dataset from HKO
(Hong Kong Observatory) [45], which is further published as a
benchmarkHKO-7 [46]. It covers the radar images from 2009 to 2015
captured every 6 minutes, where the original rainfall intensity is
mapped to the scale of [0, 255]. Each image has 480×480 pixels for an
area of size 512𝑘𝑚× 512𝑘𝑚 centered in Hong Kong. We continue to
use the mask for denoising ground clutter and sun spikes. For more
details, please refer to [46]. Summer heavy rainfall is critical tomany
natural disasters such as landslide. In addition, predicting hours of
precipitation ahead is important for an early warning system [4].
Thus, we focus on hourly precipitation forecasting. In addition, we
use weather data simulated by WRF model, which covers a smaller
region including Hong Kong island with 162×213 pixels. These data
are calculated with timestamp one hour, in May to August from
2011 to 2015. There are 4 types of data, water vapor mixing ratio
𝑄𝑉𝐴𝑃𝑂𝑅, temperature𝑇 , zonal wind speed𝑈 , and meridional wind
speed 𝑉 . After data analysis, we discard temperature as 𝑄𝑉𝐴𝑃𝑂𝑅
and temperature are highly correlated and𝑄𝑉𝐴𝑃𝑂𝑅 is amore direct
indicator for the formation of condensation nucleus. Neither zonal
nor meridional wind speed has a high correlation with precipitation.
We generate the absolute wind speed𝑊 =

√
𝑈 2 +𝑉 2 which has a

stable positive correlation with precipitation in each year (2011 to
2015). To combine the two data sources for one task, we extract
the corresponding 162 × 213 pixels from each original radar image
matching with the WRF data. Input and output radar images are
of one-hour interval combined with 𝑄𝑉𝐴𝑃𝑂𝑅 and generated𝑊
WRF data in the same hours. (e.g., a training sample of length 2
could be radar images at 12:06 and 13:06 with WRF data at 12:00
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Table 2: The results for the synthetic dataset of degree 3. The best and the second-best average ranks and scores for each task are marked
with bold font and underline. “↓” denotes the lower the better.

Model
MSE ↓ Average.

Rank ↓ℎ𝑑 = 8 ℎ𝑑 = 16 ℎ𝑑 = 32 ℎ𝑑 = 64
𝑛𝑙 = 2 𝑛𝑙 = 3 𝑛𝑙 = 4 𝑛𝑙 = 5 𝑛𝑙 = 2 𝑛𝑙 = 3 𝑛𝑙 = 4 𝑛𝑙 = 5 𝑛𝑙 = 2 𝑛𝑙 = 3 𝑛𝑙 = 4 𝑛𝑙 = 5 𝑛𝑙 = 2 𝑛𝑙 = 3 𝑛𝑙 = 4 𝑛𝑙 = 5

Relu+LN 18.71 15.00 20.19 20.72 10.53 13.74 10.86 12.43 10.99 9.895 9.429 8.801 8.050 8.414 8.133 6.586 6.50
Sigmoid+LN 15.52 17.88 16.06 16.66 9.635 14.30 9.453 10.86 8.663 8.705 7.412 7.973 6.345 5.048 4.602 6.096 4.94
SoftPlus+LN 14.92 13.71 19.61 17.22 10.82 9.762 9.467 10.69 8.850 6.555 8.658 7.218 7.553 9.016 8.828 8.600 5.44
Pac2+LN 13.03 12.93 15.16 23.98 9.580 8.925 9.116 10.94 5.158 5.925 8.512 5.175 1.438 2.818 3.924 6.603 3.62
Pac3+LN 21.69 14.23 25.88 27.15 12.01 13.13 12.65 15.50 9.669 11.12 11.128 18.50 8.844 10.72 13.31 531.3 7.81
Relu+RN 19.73 15.08 14.23 17.21 10.82 11.74 9.648 9.797 7.024 6.379 6.629 6.230 3.634 2.783 3.218 3.153 4.00

Sigmoid+RN 33.78 31.59 35.38 37.41 33.46 41.71 33.72 26.87 31.07 29.66 25.87 31.95 25.90 33.03 26.89 28.03 9.94
SoftPlus+RN 20.90 20.86 27.14 34.00 20.13 25.74 23.97 17.22 13.81 19.45 22.05 19.26 21.86 22.40 16.44 16.62 8.88
Pac2+RN 12.00 12.14 12.22 12.43 8.409 7.242 6.262 7.764 2.807 4.621 5.119 7.269 6.749 6.055 5.126 5.172 2.31
Pac3+RN 12.57 13.479 12.93 16.28 7.928 8.856 8.195 8.795 2.979 3.386 2.401 3.972 0.972 1.285 1.301 1.577 1.56

Table 3: The results for the synthetic dataset of degree 4. The best and the second-best average ranks and scores for each task are marked
with bold font and underline. “↓” denotes the lower the better.

Model
MSE ↓ Average.

Rank ↓ℎ𝑑 = 8 ℎ𝑑 = 16 ℎ𝑑 = 32 ℎ𝑑 = 64
𝑛𝑙 = 2 𝑛𝑙 = 3 𝑛𝑙 = 4 𝑛𝑙 = 5 𝑛𝑙 = 2 𝑛𝑙 = 3 𝑛𝑙 = 4 𝑛𝑙 = 5 𝑛𝑙 = 2 𝑛𝑙 = 3 𝑛𝑙 = 4 𝑛𝑙 = 5 𝑛𝑙 = 2 𝑛𝑙 = 3 𝑛𝑙 = 4 𝑛𝑙 = 5

Relu+LN 42.79 27.86 40.63 32.23 26.85 25.58 25.49 21.75 21.44 23.26 20.27 22.97 17.94 18.54 18.01 19.77 6.94
Sigmoid+LN 36.78 29.73 38.07 31.10 24.50 23.84 22.78 23.21 17.30 15.94 17.06 17.31 12.87 12.05 11.75 13.54 5.12
SoftPlus+LN 36.54 26.78 27.91 30.30 24.19 24.89 22.84 19.57 18.30 18.96 15.71 19.23 17.95 15.38 17.83 20.35 5.06
Pac2+LN 33.73 28.07 27.18 29.32 21.74 20.98 20.46 18.14 11.68 14.97 11.07 14.98 9.453 11.31 6.338 8.528 2.88
Pac3+LN 54.68 32.48 34.19 30.98 26.67 28.08 91.18 24.22 24.69 21.51 25.56 246.4 21.52 21.85 155.7 26.37 8.00
Relu+RN 39.27 31.15 31.31 29.13 26.14 22.90 24.21 20.17 15.07 17.73 16.93 14.86 10.25 12.39 8.652 9.547 4.44

Sigmoid+RN 69.12 45.19 52.22 49.72 55.75 55.17 41.74 38.90 46.97 44.97 47.10 56.48 50.14 45.28 50.07 51.20 9.81
SoftPlus+RN 42.34 35.59 34.64 35.22 41.11 31.28 32.90 29.50 34.42 40.37 34.43 45.50 32.51 34.57 36.23 33.91 8.50
Pac2+RN 29.62 24.27 25.09 22.35 18.68 19.43 19.95 16.74 8.687 8.682 6.880 7.512 12.34 14.31 16.58 15.35 2.12
Pac3+RN 31.39 25.05 29.03 37.12 18.77 19.82 19.45 14.33 9.496 9.047 7.988 6.476 5.055 5.015 4.285 3.797 2.12

and 13:00.) Our task uses 3-hour’s radar images and WRF data to
predict the next 6-hour’s precipitation radar images. To the best of
our knowledge, this is the first work to predict large-scale hourly
precipitation based on heterogeneous weather data.
Compared Models. To verify the generalization ability of our
𝑃𝑎𝑐s, we compare models based on three frameworks applied to
precipitation radar image prediction [46, 53, 54]. Examples of these
frameworks are given in Figure.2.

• ConvGRU [46]. The authors propose various models to fit
convolution layers into RNNs in a framework called encoding-
forecasting structure shown in Figure.2a. ConvGRU is a light
and effective one of them with GRU (Gated recurrent unit)
as RNN block.

• PredRNN [53]. Based on Convolutional RNN, they propose
a layer called ST-LSTM, which adds the memory state for
the traditional LSTM block. Their framework allows the
information transported temporally forward and spatially
upward (𝐶,𝐻 states in red and𝑀 state in black in Figure.2b).

• MIM [54]. It shares a similar framework with PredRNN
shown in Figure.2c. A new layer call MIM is proposed with
stationary cell 𝑆 and non-stationary memory cell 𝑁 . These
cells use state differencing between 𝐻 in blue and red in
Figure.2c to model the orders of a dynamic system.

Recall that our 𝑃𝑎𝑐s are applied into ConvGRU, ST-LSTM, and
MIM for the input and state convolutions. The adjusted ConvRNN
are denoted as modules 1 to 10 (in black bold format) in the three
frameworks in Figure.2, where more details about the parameter
setting are listed in Section.Bin the appendix.

Based on the replacement, we propose the following groups of
models for comparison.

• Baselines. The original three models, ConvGRU, PredRNN,
and MIM, without any modification.

• 𝑃𝑎𝑐s-based Models with Layer Norm. Using the 2𝑛𝑑 and
3𝑟𝑑 degree 𝑃𝑎𝑐s with Layer Norm for input and state convo-
lution of the modules 1 to 10 in Figure.2 as stated above. We
denote them as ConvGRU/PredRNN/MIM-𝑃𝑎𝑐2/𝑃𝑎𝑐3-LN.

• 𝑃𝑎𝑐s-based Models with Range Norm. Adjusted models
based on 𝑃𝑎𝑐s with Range Norm , which are named as
ConvGRU/PredRNN/MIM-𝑃𝑎𝑐2/𝑃𝑎𝑐3-RN.

• Other Failed 𝑃𝑎𝑐s-based Models. We repeat the setting of
the above groups but remove or append normalization for
the various polynomial operators, including power series 𝑥𝑛 ,
Chebyshev polynomials, and Hermite polynomials [37]. We
also test adding l1 and l2 regularizations of different weights
to them. In addition, we use a special loss to punish too
large output after activation. As all of their testing losses are
either too large or even divergent, we do not display them
in the evaluation part. Note that the second- and third-order
Hermite polynomials used in [37] are not convergent even
after prepending Range Norm.

For the more detailed comparison between 𝑃𝑎𝑐𝑠 , Relu, and Sig-
moid as activation function with Range Norm and Layer Norm,
please refer to Section.C in our appendix.
Implementation Details. We follow the previous work to eval-
uate the results based on multiple levels of precipitation inten-
sity with threshold 𝑟1 = 0.5, 𝑟2 = 2, 𝑟3 = 5, 𝑟4 = 10, and 𝑟5 =

30 [46]. Based on whether the values are in or out of an inter-
val, we can calculate the TP (prediction=in, truth=in), TN (predic-
tion=out, truth=out), FP (prediction=in, truth=out), and FN (pre-
diction=out, truth=in). Two metrics CSI = TP

TP+FN+FP and HSS =
TP×TN−FN×FP

(TP+FN) (FN+TN)+(TP+FP) (FP+TN) are used to evaluate the perfor-
mance of the models for rainfall with different levels of intensities.
In addition, we use the twometrics B-MSE and B-MAE that paymore
effort to the heavy rainfall, which has a great impact on civil lives
[46]. To be more specific, with regard to the rainfall intensity 𝑟 in
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Figure 2: The 3 tested frameworks, ConvGRU, PredRNN, and MIM. By applying 𝑃𝑎𝑐s of degrees 2 and 3 to the input and state convolutions
in their original ConvRNNmodules 1 to 10, we get 6 newmodels ConvGRU-Pac2, ConvGRU-Pac3, PredRNN-Pac2, PredRNN-Pac3, MIM-Pac2,
and MIM-Pac3. All the examples use 2 timesteps of input (𝑋1, 𝑋2, 𝐴1, 𝐴2) to predict the precipitation in the next 2 timesteps(𝑋3, 𝑋4). (a) An
example for the ConvGRU model with 3 levels in their encoder-forecaster framework. Modules 1 to 6 are ConvGRU layers in their original
paper. (b) The example for the framework of PredRNN with 2 layers. Module 7 and 8 are applied with 𝑃𝑎𝑐s compared with the original ST-
LSTM layer in their paper. (c) A framework of MIM with 1 ST-LSTM layer and 3 MIM-related layers. In their paper, modules 9 and 10 are two
MIM layers.

each pixel, we have a weight function: 𝑤 (𝑟 ) =


1, 𝑟 < 2
2, 2 ≤ 𝑟 < 5
5, 5 ≤ 𝑟 < 10
10, 10 ≤ 𝑟 < 30
30, 𝑟 ≥ 30

.Then

given the pixel set 𝑃 = [1, 162] × [1, 213] and mask𝑀 , where pixel
𝑝 ∈ 𝑀 refers to 𝑝 ∈ 𝑃 is masked and vice versa, the B-MSE and B-
MAE are defined as B-MSE= 1

𝑇𝑜𝑢𝑡

∑𝑇𝑜𝑢𝑡
𝑡=1

∑
𝑚∈𝑃\𝑀 𝑤 (𝑟𝑡,𝑝 ) (𝑟𝑡,𝑝 − 𝑟𝑡,𝑝 )2 and

B-MAE= 1
𝑇𝑜𝑢𝑡

∑𝑇𝑜𝑢𝑡
𝑡=1

∑
𝑚∈𝑃\𝑀 𝑤 (𝑟𝑡,𝑝 )

��𝑟𝑡,𝑝 − 𝑟𝑡,𝑝
��, where 𝑇𝑜𝑢𝑡 is the num-

ber of images to predict and 𝑟𝑡,𝑝 and 𝑟𝑡,𝑝 are the ground truth and
prediction result of the intensity in pixel 𝑝 and 𝑡𝑡ℎ image. We also
add average rank among all the metrics to compare all the models.
Details of training configurations are in the appendix (Section A)
Experimental Results. The evaluation results are shown in Ta-
ble.4. Each score is the average result of 3 repetitions, where bold
font is used for the best scores and underlined scores are the second-
best ones. For each framework, we compare eight variants. #-pure-
long refers to the original models with only radar image (pure)
as input, while #-wrf-long uses the concatenation of radar image
and WRF data (wrf) as input data. #-pure and #-wrf have the same
setting but run for the iterations a quarter of the original ones. With
fewer iterations, all the frameworks have better performance as the
models are overfitting under the original configuration. Thus, we
keep this setting for the rest of the models, which are 𝑃𝑎𝑐s-based
with both radar image and WRF data as input data. #-Pac2-LN and
#-Pac3-LN embed Pacs of degrees 2 and 3 with Layer Norm into the
original models according to Figure.2. #-Pac2-RN and #-Pac3-RN
are the 𝑃𝑎𝑐s-based models with Range Norm.

B-MSE and B-MAE evaluate the prediction error of various in-
tensities of precipitation as a whole. For the average scores of three
frameworks, 𝑃𝑎𝑐2 with Layer Norm outperforms all the 4 original
models by reducing B-MSE by 5.2% to 17.5% and reducing B-MAE
by 1.7% to 7.3%, while 𝑃𝑎𝑐3 with Layer Norm reduces B-MSE by
8.9% to 20.8% and reduces B-MAE by 0.3% to 6.0%. In addition, with
Range Norm, 𝑃𝑎𝑐2 achieves 11.3% to 22.9% reduction on B-MSE
and 1.7% to 7.4% reduction on B-MAE, while 𝑃𝑎𝑐3 outperforms
the original models by decreasing B-MSE by 13.6% to 24.8% and
decreasing B-MAE by 3.4% to 9.0%. The improvement validates the
effectiveness of polynomial operators and shows the importance of
Range Norm for 𝑃𝑎𝑐s.

The CSI and the HSI are defined on multiple levels of precip-
itation intensity 𝑟 . For the light to middle rain (i.e., 0.5 ≤ 𝑟 ≤ 2,
2 ≤ 𝑟 ≤ 5, and 5 ≤ 𝑟 ≤ 10), 𝑃𝑎𝑐s-based models overwhelmingly
beat the original models. By ranking the 4 𝑃𝑎𝑐-based models among
8 models in each framework, all the 4 models achieve top-5 ranks
for each score, while for 38.9% scores the 4 models get all the top-4
ranks. With Range Norm, 𝑃𝑎𝑐s perform better and get the 17 best
scores out of 18. For heavier rains (i.e., 10 ≤ 𝑟 ≤ 30, 30 ≤ 𝑟 ), the
improvement of 𝑃𝑎𝑐s are not so stable. However, the best scores
still belong to 𝑃𝑎𝑐-based models, which improve the best scores
from those of the original models by 4.8% (10 ≤ 𝑟 ≤ 30) and 58.8%
(30 ≤ 𝑟 ) for the two CSI scores and 4.9% and 58.6% for HSI scores.

Overall, for all the metrics in all the groups, the two 𝑃𝑎𝑐s-based
models with Range Norm get 61.1% of the top 1 scores while the
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Table 4: The evaluation results for precipitation forecasting. In each group, bold font are the best B-MSE and B-MAE, where ↓ denotes the
lower the better and ↑ for the higher the better. Underlined results are the second-best scores.

Framework Group B-MSE ↓ B-MAE ↓ CSI ↑ HSS ↑ Average
𝑟 ≥ 0.5 𝑟 ≥ 2 𝑟 ≥ 5 𝑟 ≥ 10 𝑟 ≥ 30 𝑟 ≥ 0.5 𝑟 ≥ 2 𝑟 ≥ 5 𝑟 ≥ 10 𝑟 ≥ 30 Rank↓

ConvGRU

ConvGRU-pure-long 4282 ± 69 7300 ± 55 0.2024 0.1593 0.1070 0.0589 0.0147 0.2814 0.2338 0.1661 0.0965 0.0263 18.67
ConvGRU-wrf-long 4298 ± 87 7312 ± 96 0.2043 0.1581 0.1048 0.0571 0.0145 0.2845 0.2322 0.1627 0.0936 0.0262 19.67
ConvGRU-pure 3886 ± 240 7039 ± 191 0.2274 0.1759 0.1177 0.0727 0.0222 0.3085 0.2527 0.1785 0.1166 0.0400 11.83
ConvGRU-wrf 3925 ± 238 7097 ± 199 0.2224 0.1717 0.1162 0.0702 0.0178 0.3004 0.2462 0.1763 0.1126 0.0320 13.33

ConvGRU-𝑃𝑎𝑐2-LN 3468 ± 123 6723 ± 142 0.2479 0.1924 0.1294 0.0802 0.0289 0.3351 0.2771 0.1975 0.1294 0.0514 4.08
ConvGRU-𝑃𝑎𝑐3-LN 3478 ± 319 7182 ± 94 0.2415 0.1745 0.1042 0.0521 0.0094 0.3235 0.2535 0.1621 0.0861 0.0167 17.58
ConvGRU-𝑃𝑎𝑐2-RN 3300 ± 139 6897 ± 56 0.2578 0.1955 0.1248 0.0621 0.0057 0.3468 0.2841 0.1938 0.1023 0.0103 9.92
ConvGRU-𝑃𝑎𝑐3-RN 3163 ± 67 6678 ± 77 0.2643 0.2123 0.1401 0.0791 0.0136 0.3534 0.3071 0.2164 0.1290 0.0243 2.83

PredRNN

PredRNN-pure-long 4202 ± 71 7182 ± 94 0.2105 0.1646 0.1112 0.0624 0.0169 0.2933 0.2415 0.1713 0.1011 0.0299 15.33
PredRNN-wrf-long 4269 ± 76 7277 ± 60 0.1992 0.1567 0.1099 0.0604 0.0130 0.2764 0.2299 0.1697 0.0980 0.0227 19.42
PredRNN-pure 3762 ± 84 6901 ± 38 0.2363 0.1790 0.1185 0.0682 0.0149 0.3223 0.2589 0.1806 0.1096 0.0265 12.92
PredRNN-wrf 3655 ± 123 6775 ± 91 0.2423 0.1886 0.1291 0.0765 0.0143 0.3286 0.2726 0.1973 0.1234 0.0257 9.25

PredRNN-𝑃𝑎𝑐2-LN 3620 ± 209 6880 ± 79 0.2376 0.1838 0.1258 0.0759 0.0152 0.3211 0.2643 0.1912 0.1217 0.0272 9.92
PredRNN-𝑃𝑎𝑐3-LN 3488 ± 91 6752 ± 44 0.2461 0.1906 0.1273 0.0681 0.0108 0.3333 0.2754 0.1946 0.1102 0.0195 10.58
PredRNN-𝑃𝑎𝑐2-RN 3258 ± 34 6732 ± 60 0.2524 0.1935 0.1309 0.0591 0.0073 0.3372 0.2791 0.2039 0.0980 0.0134 9.00
PredRNN-𝑃𝑎𝑐3-RN 3167 ± 102 6692 ± 23 0.2510 0.1928 0.1224 0.0639 0.0072 0.3355 0.2788 0.1891 0.1055 0.0132 10.25

MIM

MIM-pure-long 4245 ± 88 7246 ± 18 0.2068 0.1583 0.1077 0.0614 0.0174 0.2871 0.2313 0.1654 0.0992 0.0307 16.67
MIM-wrf-long 4336 ± 104 7300 ± 108 0.1913 0.1521 0.1053 0.0561 0.0136 0.2683 0.2243 0.1631 0.0913 0.0238 21.00
MIM-pure 3805 ± 106 6884 ± 110 0.2375 0.1806 0.1186 0.0698 0.0181 0.3244 0.2608 0.1802 0.1116 0.0323 11.08
MIM-wrf 3648 ± 71 6760 ± 42 0.2383 0.1887 0.1295 0.0756 0.0182 0.3244 0.2729 0.1976 0.1214 0.0324 7.42

MIM-𝑃𝑎𝑐2-LN 3556 ± 170 6683 ± 110 0.2449 0.1914 0.1310 0.0793 0.0123 0.3309 0.2750 0.1991 0.1270 0.0224 7.58
MIM-𝑃𝑎𝑐3-LN 3259 ± 16 6643 ± 28 0.2546 0.1932 0.1290 0.0699 0.0075 0.3383 0.2760 0.1965 0.1127 0.0136 7.83
MIM-𝑃𝑎𝑐2-RN 3396 ± 144 6645 ± 64 0.2529 0.1926 0.1269 0.0744 0.0150 0.3393 0.2765 0.1927 0.1188 0.0268 6.33
MIM-𝑃𝑎𝑐3-RN 3375 ± 104 6556 ± 136 0.2542 0.1962 0.1319 0.0781 0.0148 0.3403 0.2814 0.2009 0.1257 0.0264 3.50

two 𝑃𝑎𝑐s-based models with Layer Norm get 22.2% and the other
4 original models get 16.7%. Accounting for both the best and the
second-best scores, models using 𝑃𝑎𝑐s cover 56.9% scores with
Range Norm and 26.4% with Layer Norm. The average rank shows
a comparison for all the 24 models in three frameworks. The best
two models are ConvGRU and MIM based on our 𝑃𝑎𝑐s with Norm
Range (rank 2.83 and 3.50 on average with 12 scores). In each frame-
work, the average ranks of the two 𝑃𝑎𝑐-based models with Range
Norm are better than the models using Layer Norm. This result
validates our conjecture that by eliminating the instability using
Range Norm, 𝑃𝑎𝑐s realize their full potential of the great power for
feature extraction. With Layer Norm, 𝑃𝑎𝑐s still beat the two groups
of original models. The great improvement of the precipitation
prediction on all three frameworks indicates the reliability of our
modules in various deep learning structures.
Discussion and Result Summary. In many designations of deep
learning modules, researchers make the trade-off between stable
training and expressive features. For example, layer normalization
and batch normalization sacrifice the mean and std information of
input data for smooth solution space.

In this work, we apply polynomial activation functions to extract
meaningful non-linear features. However, the stability of training is
weakened.We choose Chebyshev polynomials as the basis functions
so that the output is robust with confined input, which can be
gathered with the help of a prepended layer normalization.

However, to tame the furious 𝑃𝑎𝑐s, Layer Norm is still not harsh
enough. In addition, the Range Norm further enhances the stability
to feed 𝑃𝑎𝑐s with input in [−1, 1]. Such a transformation could lose
more distribution information. On the synthetic dataset, other acti-
vation functions except for the nonsaturating Relu function work
worse with Range Norm. However, 𝑃𝑎𝑐s are greatly improved even
with this information loss, which should be the contributions of
valuable extracted features of polynomial operators. It is promising
to apply such a powerful operator to various tasks as we design the
Range Norm to maintain its robustness.

Here, We conclude the experimental results. On the synthetic
dataset, our 𝑃𝑎𝑐s outperform all the traditional activation functions
to learn the class of polynomial objective functions with the help of

Range Norm. For the precipitation forecasting task, all the frame-
works are greatly improved with our 𝑃𝑎𝑐s, while Range Norm is
more powerful than Layer Norm. The results show the effectiveness
of our module to simulate the real precipitation system.
5 CONCLUSION
In this paper, we investigate the polynomial activation functions
(𝑃𝑎𝑐s) and design a novel class of 𝑃𝑎𝑐s for deep neural network
applied to precipitation forecasting with heterogeneous data. In
general, deep learning relies on activation functions to simulate non-
linearity. Compared with other activation functions with bounded
first-order derivatives, 𝑃𝑎𝑐s serves as a polynomial approximator
to simulate complex physical relationships in the rainfall system.
Previous related studies suffer from the training instability problem
and thus failed to apply 𝑃𝑎𝑐s to deep networks. Our structure solves
this problem with Chebyshev polynomials and prepended normal-
ization. We further propose a normalization called Range Norm to
enhance stability. We validate the effectiveness of Pacs and Range
Norm on a synthetic dataset and an enhanced benchmark HKO-7.
On the synthetic dataset, 𝑃𝑎𝑐s outperform all the other activation
functions to learn the polynomial objective functions with the help
of Range Norm. On three frameworks for precipitation forecasting,
models improved by our 𝑃𝑎𝑐s all achieve better performances and
show the effectiveness of 𝑃𝑎𝑐s and Range Norm for real-world phys-
ical problems. Our work unearths an underestimated but powerful
tool in deep learning to handle the complex physical relationship
with heterogeneous data.
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A TRAINING CONFIGURATION
For the synthetic dataset, the Adam optimizer [30] with a learning
rate of 0.1 are applied for all the models. The training is conducted
on one machine with 4 NVIDIA V100 GPUs. All the codes are im-
plemented in Pytorch [42]. The batch size is 2048 and the maximum
number of iterations is 217. We apply Early Stopping to all the mod-
els, which checks every 512 iterations and stops after 5 checkpoints
without improvement. Each model has 16 subtasks. The results are
the average scores of 5 repetitions for each task.

For the precipitation forecasting task, the models are trained on
two machines, one with 4 NVIDIA V100 GPUs and another with
4 RTX 3090 GPUs. All the codes are implemented in Pytorch [42].
We use Adam optimizer [30] with learning rate 10−4 for ConvGRU
models and 10−3 for PredRNN and MIM models. All the models are
learning tominimize the sum of B-MSE and B-MAE (i.e., 0.00005(𝐵−
𝑀𝑆𝐸 +𝐵−𝑀𝐴𝐸)). The batch size is fixed to 4 for all the models. We
reduce the maximum running iterations (80,000 for ConvGRU and
160,000 for PredRNN and MIM) to one quarter (20,000 for ConvGRU
and 40,000 for PredRNN and MIM), which has better results. Each
model is repeated three times. All the other parameter settings are
the same as the original papers.

B THE DETAILS OF MODEL
CONFIGURATIONS

Here are the setting of frameworks for precipitation forecasting.
We show the information for ConvGRU in Table.5, PredRNN in
Table.6, and MIM in Table.7.

C VARYING ACTIVATION FUNCTION FOR
RAINFALL PREDICTION

We display our result in Table.8. On the three frameworks (Con-
vGRU, PredRNN, and MIM), our 𝑃𝑎𝑐s are compared with Relu and
Sigmoid functions, which are normalized by Layer Norm and Range
Norm. 𝑃𝑎𝑐s-based models get the highest scores for each frame-
work, where 𝑃𝑎𝑐3with Range Norm is particularly powerful, which
have 5 out of 6 best scores and 1 second-best score. 𝑃𝑎𝑐s-based mod-
els also get almost all the second-best scores except the B-MAE of
Relu-based model on PredRNN with Layer Norm (B-MAE= 6710).
The result further validates the effectiveness of our 𝑃𝑎𝑐s compared
with commonly used activation functions. On the other hand, most
of the models with Relu and Sigmoid activation functions do not
have better results with Range Norm compared with Layer Norm.
The adeptness of Range Norm and other activation functions still
needs to be investigated in future work.
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Table 5: The parameter setting of the models based on ConvGRU. All the structures are the same as Table 14 in their paper [46] with ad-
justments according to our input and output size. The ConvGRU layer has inner convolutions for input-to-state and state-to-state transition.
We useModule A to denote these adjustable ConvGRU layers in the table, which are the original ConvGRU layers in baseline and 𝑃𝑎𝑐s-based
ConvGRUs in the improved models. Conv and Deconv are convolution and deconvolution layers. Ker(in), Str(in), Pad(in) are the kernel size,
stride and padding for the input-to-state convolution. Ker(st) and Dil(st) are the kernel and dilation size for the state-to-state convolution.
In/Out M and In/Out F are the number of input/output sizes for object and feature dims. Value in parentheses (i.e., 3(1)) refers to the model
with only radar echo data as input (only 1 feature dim). Input and State are the input and state for each layer.

Name Ker(in) Str(in) Pad(in) Ker(st) Dil(st) In/Out M In/Out F Layer Input State
econv1 7 × 7 5 × 5 1 × 1 - - 162 × 213/32 × 42 3(1)/8 Conv input -

emodule1 3 × 3 1 × 1 1 × 1 5 × 5 1 × 1 32 × 42/32 × 42 8/64 Module A econv1 -
econv2 5 × 5 3 × 3 1 × 1 - - 32 × 42/10 × 14 64/64 Conv emodule1 -

emodule2 3 × 3 1 × 1 1 × 1 5 × 5 1 × 1 10 × 14/10 × 14 64/192 Module A econv1 -
econv3 3 × 3 2 × 2 1 × 1 - - 10 × 14/5 × 7 192/192 Conv emodule2 -

emodule3 3 × 3 1 × 1 1 × 1 3 × 3 1 × 1 5 × 7/5 × 7 192/192 Module A econv3 -
fmodule1 3 × 3 1 × 1 1 × 1 3 × 3 1 × 1 5 × 7/5 × 7 192/192 Module A - emodule3
fdeconv1 2 × 2 2 × 2 0 × 0 - - 5 × 7/10 × 14 192/192 Deconv fmodule1 -
fmodule2 3 × 3 1 × 1 1 × 1 5 × 5 1 × 1 10 × 14/10 × 14 192/192 Module A fdeconv1 emodule2
fdeconv2 5 × 5 3 × 3 0 × 1 - - 10 × 14/32 × 42 192/192 Deconv fmodule2 -
fmodule3 3 × 3 1 × 1 1 × 1 5 × 5 1 × 1 32 × 42/32 × 42 192/64 Module A fdeconv2 emodule1
fdeconv3 7 × 8 5 × 5 0 × 0 - - 32 × 42/162 × 213 64/8 Deconv fmodule3 -
fconv4 1 × 1 1 × 1 0 × 0 - - 162 × 213/162 × 213 8/1 Conv fdeconv3 -

Table 6: The parameter setting of the models based on PredRNN. We follow the structures in their paper for radar image prediction [53].The
ConvRNNs used for their model are ST-LSTMs. As there are only two layers in the framework, 𝑃𝑎𝑐s are applied to both layers in the adjusted
models, where the blocks are denoted as Module B in the table. Ker, Str are the size of kernel and stride for convolutions in its blocks. 𝑃𝑎𝑡 is
the patch size, where 𝑃𝑎𝑡 ×𝑃𝑎𝑡 grids of 𝑓 dims are converted to 1 grid with 𝑃𝑎𝑡 ×𝑃𝑎𝑡 × 𝑓 dims. The other nominations are the same as Table.5.

Name Ker Str Pad In/Out M In/Out F Layer Input
reshape1 − − 4 162 × 213/41 × 54 3(1)/48(16) Reshape input
module2 3 × 3 1 × 1 - 41 × 54/41 × 54 48(16)/128 Module B reshape1
module3 3 × 3 1 × 1 - 41 × 54/41 × 54 128/128 Module B module2
conv4 1 × 1 1 × 1 - 41 × 54/41 × 54 128/48(16) Conv module3

reshape5 − − 4 41 × 54/162 × 213 48(16)/3(1) Reshape conv4

Table 7: The parameter setting of themodels based onMIM. The structures are the same as theirs for the radar echo dataset [54]. Themodules
which could be the 𝑃𝑎𝑐s-based or the original MIMs are named as Module C in the table. The meanings of items are the same as in Table.6.

Name Ker Str Pad In/Out M In/Out F Layer Input
reshape1 − − 4 162 × 213/41 × 54 3(1)/48(16) Reshape input
stlstm2 3 × 3 1 × 1 - 41 × 54/41 × 54 48(16)/64 ST-LSTM reshape1
module3 3 × 3 1 × 1 - 41 × 54/41 × 54 64/64 Module C stlstm2
mim4 3 × 3 1 × 1 - 41 × 54/41 × 54 64/64 MIM module3

module5 3 × 3 1 × 1 - 41 × 54/41 × 54 64/64 Module C mim4
conv6 1 × 1 1 × 1 - 41 × 54/41 × 54 64/48(16) Conv module5

reshape7 − − 4 41 × 54/162 × 213 48(16)/3(1) Reshape conv6

Table 8: The evaluation results for precipitation forecasting. In each group, the best B-MSE and B-MAE are in bold font, where ↓ denotes the
lower the better. Underlined results are the second-best scores.

Framework Normalization Activation Function B-MSE ↓ B-MAE ↓

ConvGRU

Layer Norm

𝑃𝑎𝑐2 3468 ± 123 6723 ± 142
𝑃𝑎𝑐3 3478 ± 319 7182 ± 94

Sigmoid 3311 ± 201 7143 ± 260
Relu 3337 ± 238 6758 ± 251

Range Norm

𝑃𝑎𝑐2 3300 ± 139 6897 ± 56
𝑃𝑎𝑐3 3163 ± 67 6678 ± 77

Sigmoid 3609 ± 109 7827 ± 168
Relu 3429 ± 240 7052 ± 137

PredRNN

Layer Norm

𝑃𝑎𝑐2 3620 ± 209 6880 ± 79
𝑃𝑎𝑐3 3488 ± 91 6752 ± 44

Sigmoid 3459 ± 251 7281 ± 330
Relu 3359 ± 97 6710 ± 91

Range Norm

𝑃𝑎𝑐2 3258 ± 34 6732 ± 60
𝑃𝑎𝑐3 3167 ± 102 6692 ± 23

Sigmoid 3654 ± 378 7889 ± 358
Relu 3301 ± 98 6856 ± 35

MIM

Layer Norm

𝑃𝑎𝑐2 3556 ± 170 6683 ± 110
𝑃𝑎𝑐3 3259 ± 16 6643 ± 28

Sigmoid 3490 ± 159 6710 ± 146
Relu 3421 ± 76 6645 ± 31

Range Norm

𝑃𝑎𝑐2 3396 ± 144 6645 ± 64
𝑃𝑎𝑐3 3375 ± 104 6556 ± 136

Sigmoid 3395 ± 43 6733 ± 21
Relu 3657 ± 76 6717 ± 127
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