ICCV'2'3PARIS

Noise2Info: Noisy Image to Information of Noise for Self-Supervised Image Denoising

Jiachuan Wang⁺, Shimin Di⁺, Lei Chen⁺*, Charles Wang Wai Ng⁺*

⁺The Hong Kong University of Science and Technology, Hong Kong SAR, China

*The Hong Kong University of Science and Technology (Guangzhou), Guangdong Province, China

Outline

- Motivation
- Problem Formulation
- Methods
- Evaluations

Background

Image denoising is important in many scenarios

- Photo sharing on social media
- Medical images denoising
- Radar images repairing

Methods for Image Denoising

Traditional methods are quickly surpassed by deep learning methods

Methods for Image Denoising

Clean images are hardly available in realworld applications!

Supervised deep learning model Loss optimization via gradient descent

Methods for Image Denoising

Self-supervised deep learning model Only noisy images are available

Clean images are hardly available in realworld applications!

Supervised deep learning model Loss optimization via gradient descent

No clean image Y as guidance Using noisy image X to guide training \rightarrow Learn an identical function x' = f(X) = x

No clean image Y as guidance Using noisy image X to guide training \rightarrow Learn an identical function x' = f(X) = x

Solution:

Learns each pixel x under *J-invariant* That is, cutting input into subsets $J = [J_1, J_2, \dots, J_k]$ Recovering J_i only based on $J_c = J - \{J_i\}$

Noisy image X

Solution:

Learns each pixel x under *J-invariant* That is, cutting input into subsets $J = [J_1, J_2, \dots, J_k]$ Recovering J_i only based on $J_c = J - \{J_i\}$

Problem:

Only information from J_c is used. (External information)

 \rightarrow Use information from the pixel itself. (Internal information)

Problem:

Only information from J_c is used. (External information)

 \rightarrow Use information from the pixel itself. (Internal information)

Problem:

Only information from J_c is used. (External information)

 \rightarrow Use information from the pixel itself. (Internal information)

Internal loss External loss

$$\downarrow \qquad \downarrow \qquad \downarrow$$

 $\mathcal{L}(\mathcal{F}, X) = \mathcal{L}_{in} + 2\sigma_n \mathcal{L}_{ex}$
 \uparrow
The standard deviation of the noi

The standard deviation of the noise

Problem:

 σ_n is still unknown in real-world applications.

$$\mathcal{L}(\mathcal{F}, X) = \mathcal{L}_{in} + 2\sigma_n \mathcal{L}_{ex}$$

The standard deviation of the noise

Problem:

 σ_n is still unknown in real-world applications.

This motivates us to design a totally self-supervised method considering both internal and external information.

 \rightarrow derive σ_n -related information only using the noisy images

$$\mathcal{L}(\mathcal{F}, X) = \mathcal{L}_{in} + 2\sigma_n \mathcal{L}_{ex}$$

The standard deviation of the

The standard deviation of the noise

Outline

- Motivation
- Problem Formulation
- Algorithms
- Evaluations

Notations

Supervised Learning

Train model $\mathcal F$ to consider internal information

Problem

How to estimate σ_n only based on noisy images, so that the method is end-to-end self-supervised?

 \mathcal{L}_{in} and \mathcal{L}_{ex} only need images image, but σ_n still needs information of noise

Outline

- Motivation
- Problem Formulation
- Algorithms
- Evaluations

1. A theoretical upper bound

We first propose a bound for σ_n

$$\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2])}}{m}$$

where all the terms are tractable except Y,

which is the clean image.

2. Transformation **1. A theoretical upper bound** We further transform the intractable term: We first propose a bound for σ_n $\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2]}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2]}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2]}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2]}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2]}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2]}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2]}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2]}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2]}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y||^2]}}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y|]})}}{\sigma_n \leq \frac{\mathcal{L}_{ex} + \sqrt{\mathcal{L}_{ex}^2 + m(\mathcal{L}_{in} - E_{X,Y}[||\mathcal{F}(X) - Y|]})}}$ $\bullet E_{X,Y}[||\mathcal{F}(X) - \mathbf{Y}||^2]$ $= E_{X,Y} \left[\left| \left| (X - Y) - (X - \mathcal{F}(X)) \right| \right|^2 \right]$ where all the terms are tractable except Y, $= E_{X,N} \left[|N - \widetilde{N}(X)|^2 \right]$ which is the clean image. "noise" removed by real noise our model (tractable) ntractable

1. A theoretical upper bound

3. Transfer to tractable distribution

As the distribution of noise N is unknown, we use the maximum likelihood estimation (MLE) \mathcal{N}^* of removed noise to get a smaller estimation of the original term.

$E_{X,N^*}\left[\left| N^* - \widetilde{N}(X) \right| \right]^2 \right]$

Using \mathcal{N}^* , we can sample N^* for estimation.

2. Transformation

1. A theoretical upper bound

3. Transfer to tractable distribution

As the distribution of noise N is unknown, we use the maximum likelihood estimation (MLE) \mathcal{N}^* of removed noise to get a smaller estimation of the original term.

 $E_{X,N^*}\big[||\boldsymbol{N}^* - \widetilde{N}(X)||^2\big]$

Using \mathcal{N}^* , we can sample N^* for estimation.

2. Transformation

The derived **MLE** of removed noise is

shown in the following lemma

Lemma 2 (MLE of samples from $\tilde{\mathbf{n}}$). We denote the maximum likelihood estimation of $\tilde{\mathbf{n}}$ as $n^* \sim \mathcal{N}^*$, which has distribution:

$$P(n^* = \tilde{N}_j^{(i)}) = (mq)^{-1} \qquad \forall \tilde{N}_j^{(i)} \in \tilde{\mathbf{n}}, \tag{8}$$

where $\tilde{N}_{j}^{(i)}$ represents $\tilde{N}(X^{(i)})_{j}$ for short.

1. A theoretical upper bound

3. Transfer to tractable distribution

As the distribution of noise N is unknown, we use the maximum likelihood estimation (MLE) \mathcal{N}^* of removed noise to get a smaller estimation of the original term.

$$E_{X,N^*}\left[||N^* - \widetilde{N}(X)||^2\right]$$

Using \mathcal{N}^* , we can sample N^* for estimation.

2. Transformation

4. Relaxation to tractable estimation In each batch, the *k* sampled pixels N^* are **index-free**. How they map to the *k* pixels in $\widetilde{N}(X)$ is still unknown.

We derive a **tractable** bound, which is the optimal case when model is well-trained.

$$\geq E_{N*} \left[E_X \left[\sum_{j=1}^m (N_{v_j}^* - \tilde{N}(X)_{u_j})^2 \right] \right]$$

1. A theoretical upper bound

3. Transfer to tractable distribution

The bound is given in the following lemma

Lemma 3. Given the sampled noise map N^* from \mathscr{N}^* , we sort the *m* pixels of the removed noise map $\tilde{N}(X)$ $(\{\tilde{N}(X)_j\}_{j=1}^m)$ in increasing order and define the index list as $\{u_1, u_2, \cdots, u_m\}$, i.e., $\tilde{N}(X)_{u_1} \leq \tilde{N}(X)_{u_2} \leq$ $\tilde{N}(X)_{u_3} \leq \cdots \leq \tilde{N}(X)_{u_m}$. Similarly, we define the index list for increasingly sorted sampled noise pixels $\{N_j^*\}_{j=1}^m$ as $\{v_1, v_2, \cdots, v_m\}$. We have:

$$\mathbb{E}_{N^{*}}[\mathbb{E}_{X}[\sum_{j=1}^{m} (N_{j}^{*} - \tilde{N}(X)_{j})^{2}]]$$

$$\geq \mathbb{E}_{N^{*}}[\mathbb{E}_{X}[\sum_{j=1}^{m} (N_{v_{j}}^{*} - \tilde{N}(X)_{u_{j}})^{2}]].$$
(10)

2. Transformation

4. Relaxation to tractable estimation In each batch, the *k* sampled pixels N^* are **index-free**. How they map to the *k* pixels in $\widetilde{N}(X)$ is still unknown.

We derive a **tractable** bound, which is the optimal case when model is well-trained.

$$\geq E_{N^*} \left[E_X \left[\sum_{j=1}^m (N_{v_j}^* - \tilde{N}(X)_{u_j})^2 \right] \right]$$

- 1. A theoretical upper bound
- 3. Transfer to tractable distribution
- 5. Training and updating algorithm
- An overall training algorithm *Noise2Info*.

2. Transformation

4. Relaxation to tractable estimation

Algorithm 2 Noise2Info

```
Input: The denoising model \mathcal{F}, noisy images \mathbf{X} = \{X^{(i)}\}_{i=1}^{p}, the number of epochs k_r, the number of samples for model updation k_t and \sigma_n estimation k_u.
Initialize \sigma_{loss} \leftarrow 1.
for i \leftarrow 1 to k_r do
Update \mathcal{F} via loss \mathcal{L}_{in} + 2\sigma_{loss}\mathcal{L}_{ex} with k_t samples.
\sigma_{loss}^* \leftarrow \text{Algorithm 1}(\mathcal{F}, k_u \text{ noisy images}, k_{mc})
if \sigma_{loss}^* < \sigma_{loss} then
\sigma_{loss} \leftarrow \sigma_{loss}^*
end if
end for
Return: model \mathcal{F} for denoising
```

Outline

- Motivation
- Problem Formulation
- Algorithms
- Evaluations

Experimental Setting

- Benchmark Datasets (Self-supervised denoising)
 - ImageNet
 - Hanzi
 - BSD68
- Real-World Datasets
 - SIDD
 - PolyU
- Synthetic Datasets
 - Inject different scales of noise
 - Inject different types of noise

Experimental Setting

Tested Algorithms

- Traditional methods
 - NLM
 - BM3D
- Supervised methods
 - Noise2True
 - Noise2Noise
- Self-supervised methods
 - Noise2Void
 - Noise2Self
 - ConvBS
 - Noise2Same

Experimental Results

Metric: Peak Signal-to-Noise Ratio (PSNR) evaluates the similarity between two images. The **larger** the better.

PSNR of denoising output

Performance of self-supervised methods with donut masking. Our Noise2Info **outperforms** other methods on 3 benchmarks.

Experimental Results

Metric: Peak Signal-to-Noise Ratio (PSNR) evaluates the similarity between two images. The **larger** the better.

Table 5: The performance on the Hànzì dataset on more noise types. N2S denotes Noise2Same ($\sigma_{loss} = \sigma_n$). FBI [6] is a denoising method designed for Poisson-Gaussian noise.

	Types of injected noises						
Model	Poisson-Gaussian (A)		Poisson-Gaussian (B)		Pepper		
	$\sigma_n = 0.8181, \mu = 0.0002$		$\sigma_n = 10.32, \mu = 6.34$		$\sigma_n = 0.8492, \mu = 0.3037$		
	PSNR	σ_{loss}	PSNR	σ_{loss}	PSNR	σ_{loss}	
Noise2Void	18.88	-	17.93	-	23.77	-	
Noise2Self	18.91	-	17.57	-	22.19	-	
Noise2Same	18.91	0.8181	14.49	10.32	24.35	0.8492	
FBI [6]	18.87	N/A	6.54	N/A	N/A	N/A	
Noise2Info	19.11	0.8317	18.52	0.8551	24.96	0.7043	

Performance of self-supervised methods on 2 types of noise out of our theory assumption (zero-mean and signal independent). Our Noise2Info **outperforms** other methods on 3 types of noise.

Experimental Results

Estimation and real σ_n on Hanzi dataset

Estimation σ_{loss}	0.6006	0.7818	0.8710	0.9187
Real std σ_n	0.5845	0.7683	0.8593	0.9075

Our estimation σ_{loss} closely upper bound the real σ_n

The estimation σ_{loss} gets closer to σ_n as training steps increase

 σ_{loss} estimation in different training steps.

Thank You Q&A

The code and datasets <u>https://github.com/dominatorX/Noise2Info-code</u>