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Abstract—Annotation through crowdsourcing draws incremen-
tal attention, which relies on an effective selection scheme given
a pool of workers. Existing methods propose to select workers
based on their performance on tasks with ground truth, while
two important points are missed. 1) The historical performances
of workers in other tasks. In real-world scenarios, workers need
to solve a new task whose correlation with previous tasks is not
well-known before the training, which is called cross-domain.
2) The dynamic worker performance as workers will learn
from the ground truth. In this paper, we consider both factors
in designing an allocation scheme named cross-domain-aware
worker selection with training approach. Our approach proposes
two estimation modules to both statistically analyze the cross-
domain correlation and simulate the learning gain of workers
dynamically. A framework with a theoretical analysis of the
worker elimination process is given. To validate the effectiveness
of our methods, we collect two novel real-world datasets and
generate synthetic datasets. The experiment results show that
our method outperforms the baselines on both real-world and
synthetic datasets.

Index Terms—crowdsourcing, worker selection, cross-domain

I. INTRODUCTION

The quality of the labeled data is of great importance for

the performance of machine learning, especially for supervised

learning models [26]. To get high-quality annotations for large-

scale datasets, recruiting domain experts is too expensive and

thus unacceptable. With a limited budget, annotation through

selecting crowdsourcing workers is preferable and has drawn

attention in recent years [10], [42]. Worker selection is one of

the most important issues in the quality control consideration

of crowdsourcing [52], which focuses on identifying workers

with high performance from the worker pool. How to design

an allocation scheme to effectively and efficiently select high-

performance crowd workers remains a challenging problem.

In order to select workers through worker quality estimation,

existing methods [30], [48], [49], [52] consider different fac-

tors in the crowdsourcing process: 1) workers’ responses to the

golden questions [30]; 2) additional social network interactions

for worker trustworthiness estimation [48], [52]; 3) assumption

of worker skills, which are hidden states between worker

performance and tasks [49].

In order to obtain large-scale manually labeled data for busi-

ness, many companies such as JD.com, Inc. [3], Alibaba [1],
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Fig. 1. Cross-domain worker selection. The left shows the two prior domains:
plane and elephant. The right shows the target domain: flower. We record
workers’ historical accuracy on the two prior domains and estimate the
accuracy on the target domain, to effectively train and select desired workers.

and Baidu [2] have their own commercial crowdsourcing

platforms with worker pools. The answering history of workers

stored in commercial crowdsourcing platforms can be helpful

in selecting high-quality workers to complete tasks in a new

domain [7], which is not well-explored in the existing worker

selection methods [30], [48], [49], [52]. We refer to the

tasks of new topics requiring workers to annotate as target
domain tasks, while the tasks of historical topics are prior
domain tasks. In the beginning, the correlations between the

target domain and these prior domains are not well-known,

which is called cross-domain. The performance of workers in

the prior domain can help predict their performance in the

target domain. As shown in Figure 1, given the classification

performance on the elephants and planes of workers A, B,

and C, we can obtain a rough idea of their domain knowledge

of distinguishing living creatures and distinguishing machines,

which is helpful for us to select the proper workers to work on

tasks on other domains, such as flowers. Intuitively, workers

with good performance in distinguishing elephants are likely

to be sensitive to color and shape differences (since different

kinds of elephants are similar in size but different in color and

shape). In contrast, workers who perform well in distinguish-

ing planes are likely to be good at identifying size differences

(since different kinds of planes are similar in color and shape

yet different in size). Given this prior domain knowledge,
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workers who are potentially good at distinguishing flowers

(relying on color and shape differences) can be identified.

We can train these identified workers by demonstrating the

ground truth answers to them so that they can actively learn

the characteristics of petunia and achieve better performance

on the annotations. After that, we can select the best workers

as the desired worker candidates for the target domain. In this

way, the golden questions from the target domain are fully

utilized: not only used for estimating the cross-domain worker

quality to select the best candidates but also used to boost

the annotation performance of workers on the target domain

through worker training.
However, transferring and incorporating workers’ perfor-

mance profiles across different domains is challenging. Explic-

itly defining the mappings between the domains and the skill

sets requires a comprehensive understanding of the domain

tasks, which needs expert effort and thus fails to scale well

in reality. Therefore, we propose automatically and inherently

capturing the relationship between each domain and the re-

quired skills to ensure feasibility and scalability in real-world

applications. Workers’ performances are modeled based on

reasonable assumptions for inner- and inter-domain. To be

more specific, we apply normal distributions to model work-

ers’ performances on each domain following the modeling

done by previous studies [41], [53] and adopt a multivariate

normal distribution to model the correlation between workers’

performances on different domains to achieve the goal of

cross-domain worker selection.
As correlation is not well-known for the cross-domain

problem, we apply a worker learning stage to train and select

workers while simultaneously extracting their correlations.

During the learning stage, limited golden questions are given

with accurate labels from experts. Previous approaches [32]

treat the assignment of golden questions as a sampling process

to get a static estimate of worker quality. However, workers’

knowledge of the target domain can be dynamic [20], [22]. For

instance, in Figure 1, workers are asked whether the flower is a

petunia. Initially, workers may have no idea what a petunia is.

However, after we assign multiple golden (learning) questions

regarding the petunia and reveal the answers to the workers,

they can gradually learn about the characteristics (such as

shape and color) of petunia and thus perform better when

answering new questions on the same domain.
Unfortunately, previous work has not studied the dynamic

worker knowledge change in worker selection. We fill the

research gap by simulating workers as trainable to handle the

dynamic worker selection instead of a static one. In this paper,

we propose to model the learning gain of workers based on

the Item Response Theory (IRT) [40] from the Knowledge

Tracing field to fully use the golden questions in selecting

workers. Our allocation algorithm can select potential workers

who can improve quickly during the learning stage, which are

filtered out by static methods.
The contributions of this paper are as follows:

• We incorporate the cross-domain knowledge information

and propose a novel Median Elimination-based worker se-
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Fig. 2. The definition of cross-domain-aware worker selection with training
problem. The worker selection algorithm assigns learning tasks to workers,
records and analyzes the learning task results, and performs worker selection.
The performance of the selected workers is evaluated based on the target
domain working tasks.

lection with training algorithm to find high-quality workers.

• We comprehensively consider the learning gain of workers

during the learning task worker training process over the

new domain to get a better estimate of the dynamic change

in worker quality.

• We collect two novel cross-domain worker selection datasets

for the crowdsourcing research community to study the

problem of cross-domain worker selection with training.

• We conduct extensive experiments on real-world and synthe-

sized datasets to evaluate the performance of our proposed

method comprehensively.

The following sections are arranged as follows. We first

introduce the related work in Section II. We then discuss the

setup and problem formulation in Section III. The methodol-

ogy is introduced in Section IV. We demonstrate the experi-

ment results in Section V, and finally, we conclude the paper

in Section VI.

II. RELATED WORK

The general process of worker selection for quality control

requires first estimating worker quality and then designing

proper worker elimination algorithms to select the best work-

ers. In this section, we first discuss the related works on

worker selection from two aspects: worker quality estimation

and worker elimination, which are the core components for

worker selection with training task. Then we introduce the

related works in Knowledge Tracing, which are related to the

learning gain estimation process used for estimating worker

quality and performing worker elimination.

A. Worker Quality Estimation

Worker Quality Estimation assesses the abilities and re-

liability of individual workers participating in tasks on a

crowdsourcing platform. Previous studies proposed various

worker quality estimation methods based on the informa-

tion available in different crowdsourcing worker selection

scenarios. Liu et al. [32] estimate worker quality based on

workers’ answers to golden questions. Li et al. [31] proposed

a user discovery framework to select reliable workers based on

general characteristics such as educational level, gender, and

age. However, these characteristics may be too general for

us to identify the best workers accurately. For instance, the
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approach would fail if the recruited workers were all college

students with similar backgrounds. Zhao et al. [52], and Wu

et al. [48] proposed integrating social network information

into the worker quality estimation process. A major limitation

of these approaches is that social network information is not

necessarily available in many online crowdsourcing platforms,

which limits the application domain of these approaches.

Yadav et al. [49] proposed constructing a universal skill set

with the mapping relationship between the skills and the

crowdsourcing tasks. The skills of the workers are estimated

based on the historical annotation performance. However, the

universal skill set and the mapping relationship should be

manually defined. Explicitly constructing the universal skill set

and the mapping relationship between the skills and the tasks

require domain knowledge, which brings overheads to real-

world worker selection applications. Different from existing

worker quality estimation approaches, we considered both

cross-domain knowledge and the dynamic worker knowledge

change to better capture the worker quality during the crowd-

sourcing process.

B. Worker Elimination

This section introduces the worker elimination algorithms

used by existing works. Worker elimination is a process

used to select the most qualified workers for a task while

filtering out underperforming or unreliable workers. Even-Dar

et al. [19] proposed a naive Uniform Sampling algorithm and

a Median Elimination algorithm for the top-k selection multi-

armed bandits problem, which can be adapted to perform

worker elimination. Liu et al. [32] identify the best group

of workers by assigning golden questions and selecting the

workers that perform the best on those questions. Li et al. [31]

selected the best workers based on the estimated performance

generated from the general workers’ profiles. Cao et al. [11]

refined the theoretical bounds of [19]. They introduced budget

constraints and proposed a greedy-based heuristic algorithm to

sort the workers based on the error rate and the requirements.

Zhao et al. [52] proposed forward and backward selection

algorithms based on social network connections to gradually

identify the best workers. Wu et al. [48] considered the

interest similarity between the workers and the tasks based

on social network information to identify the best workers

for the tasks. Yadav et al. [49] proposed a team formation

algorithm to gather the workers with the desired expertise

for the target tasks. Building on the Medium Elimination

algorithm introduced by [11], we additionally considered the

worker learning gain during the worker elimination process,

so as to achieve better worker elimination results.

C. Knowledge Tracing

Knowledge tracing is a technique used in education to

understand how well a student is learning a particular subject.

It involves tracking and predicting a student’s knowledge and

understanding over time. By analyzing the student’s responses

to questions or tasks, knowledge tracing models can estimate

the student’s current level of knowledge, identify areas of

strength and weakness, and provide personalized feedback and

guidance to enhance learning [13]. As discussed in [6], [35],

the knowledge tracing methods can be divided into three cate-

gories: Bayesian Knowledge Tracing, Factor Analysis Models,

and Deep Knowledge Tracing based on the different types of

inputs and application scenarios.

Bayesian Knowledge Tracing (BKT): The BKT model is first

introduced by [13], where the skills behind the questions are

considered. Four different types of probabilities associated

with changes in skill mastery are modeled, and the Bayesian

estimation of the final state skill mastery probability is used.

Several subsequent works [14], [27], [29], [37], [50] propose to

extend the original BKT model with student-specific modeling

and inter-skill relationship.

Factor Analysis Models: The simplest and the most widely

used Item Response Theory (IRT) model is Rasch’s

model [40], which defines a one-parameter logistic (1PL)

IRT model. The probability that a worker answers a question

correctly is modeled as a logistic function based on the

worker’s learning parameters and the difficulty of the question.

Wilson et al. [47] extended the original 1PL IRT model to Hi-

erarchical IRT and Temporal IRT by additionally considering

the relatedness of parameters across different questions and

times, respectively. Performance Factor Analysis (PFA) [38]

is proposed to extend the IRT model by replacing the learning

parameter with multiple learning skill parameters to model the

relationship of multiple skills.

Deep Knowledge Tracing (DKT): DKT is first proposed

in [39], which models the knowledge states (skills) of people

with Long Short Term Memory (LSTM) [24]. The LSTM

network contains many neurons to represent the hidden states

of workers’ answer history. The current knowledge states

of workers can be learned from the training data. Several

works [5], [34], [51] extend the idea of the original DKT

model to achieve improved performance.

In our paper, we aim to model the worker learning gain

without explicitly defining and modeling the relationship be-

tween the skills and the questions, so we adopt Rasch’s IRT

model [40] to model the learning process of workers while

answering learning questions. Note that the focus of this

paper is to introduce the knowledge tracing techniques into

the crowdsourcing worker selection process to achieve better

worker quality estimation and elimination results, instead of

developing novel knowledge tracing approaches.

III. PROBLEM FORMULATION

We present the notations used in this paper in Table I. The

general process of cross-domain-aware worker selection with

training can be divided into three steps, as shown in Figure 2.

We first discuss the tasks and workers considered in our paper,

introduce the three steps generally, and formally define the

cross-domain-aware worker selection with training problem.

Definition 1: (Tasks). The crowdsourcing tasks on the target

domain can be categorized into learning and working tasks.

The learning tasks (golden questions) refer to the tasks that

have gold labels. The working tasks are the tasks without gold
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TABLE I
NOTATIONS.

Notations Descriptions
Tl, Tw learning tasks and working tasks sets
W the worker pool
wi the i-th worker in the worker pool W
hi the historical profile of the worker wi

ni
number of annotation tasks completed by worker wi on
different domains

B the total budget
k number of workers we want to select
αi the learning parameter of worker wi

βd the domain difficulty parameter for domain d
θi the proficiency parameter of worker wi

Kj
the cumulative number of learning tasks assigned to each
remaining worker till round j

n the number of elimination rounds
at the initialized annotation accuracy of the target domain
Q the number of learning tasks per batch

labels. We denote the set of tasks on the target domain as T ,

the set of learning tasks as Tl, and the set of working tasks as

Tw.

For simplicity, we consider Multiple Choice Question tasks

in our paper. As suggested by [7], this selection of task type

does not influence the generalizability of our approach since

our approach is based on the answering accuracy, which can

also be computed if other kinds of tasks are used.

Definition 2: (Workers). We denote the worker pool as W .

Each worker wi in W is associated with a historical profile

(hi, ni) = ({hi,1, hi,2, ..., hi,D}, {ni,1, ni,2, ..., ni,D}) where

D is the number of prior domains, hi,j is the annotation

accuracy of worker wi on the j-th prior domain, and ni,j is

the number of annotation tasks completed by worker wi on

the j-th prior domain. The annotation accuracy of wi on the

target domain working tasks is denoted as hi,T .

Definition 3: (Learning tasks assignment). Learning tasks

assignment is the process of assigning learning tasks to the

worker and recording the accuracy of each worker. The

answers to the learning tasks are revealed to each worker after

he/she submits the answers so that he/she can learn the target

domain knowledge from the revealed ground truths.

In our paper, we train workers in rounds. Each remaining

worker wi is assigned learning tasks and the annotation

accuracy ai,c is recorded in round c.

Definition 4: (Learning results analysis). Learning results

analysis is the process of estimating workers’ performances

based on their results on the learning tasks for the assignment

of remaining learning tasks and the selection of workers.

Definition 5: (Worker selection). Considering the cross-

domain performances and learning result feedback of workers,

the worker selection step is to select the well-trained workers

with the best performance in the target domain.

Definition 6: (Cross-domain-aware worker selection with

training). Given target domain tasks T = {Tl, Tw}, the total

budget B, and worker pool W with each worker wi’s historical

profile hi. Cross-domain-aware worker selection with training

problem is to 1) properly assign no more than B tasks to |W |
workers for training based on workers’ historical records and

learning feedback and 2) select top k workers with the highest

possible annotation accuracy on working tasks Tw.

IV. METHODOLOGY

In this section, we first introduce our general framework for

cross-domain-aware worker selection with training problem

(Subsection IV-A). Then we demonstrate the process of worker

training (Subsection IV-B) and discuss the details of the two

core phases: Worker Quality Estimation (Subsection IV-C) and

Worker Selection (Subsection IV-D) with theoretical analysis.

A summary of the whole pipeline is presented in Subsec-

tion IV-E.

A. Framework

We display our framework in Figure 3. Workers are itera-

tively trained and selected through a 3-phase pipeline:

• Worker Training. In the target domain, workers answer

questions and check answers to renew their knowledge.

• Worker Quality Estimation. The ability estimation of each

worker will be updated according to his/her answers during

worker training in addition to the historical records on target

and other domains.

• Worker Selection. Based on the estimated worker quality, we

select the best half of the workers to enter the next round.

Finally, after n rounds, we obtain the selected best k workers

and assign the target domain working tasks for them to

annotate. In our paper, we fix the budgets in each round

and focus on the accuracy of dynamic worker estimation.

Mathematically, t = �B
n � is the fixed number of learning tasks

per round, and |Wc| is the number of remaining workers for

the current round c. Then, � t
|Wc|� is the number of tasks per

worker for round c.

B. Worker Training

We can summarize the worker training as a simple “Answer

and Learn” process for workers. To be more specific, after a

worker completes one batch of learning tasks, their ground

truth answers will be revealed to the worker. For example, as

shown in Figure 4, the left shows a learning task completed

by a worker, and the right shows the ground truth answer to

that task. A worker can learn from the ground truth answers

and renew his/her target domain knowledge.

Formally, after each round of task assignment, we denote

the answers of worker wi in the current round c as ai,c.

C. Worker Quality Estimation

To achieve high-quality worker selection, two factors are

important: cross-domain correlation which can help us filter

workers according to their performance on other domains; and

worker learning gain where workers who improve more from

training should be preserved and assigned with more training

tasks. Thus, we divide the worker quality estimation phase

into Cross-domain-aware Performance Estimation (CPE) and

Learning Gain Estimation (LGE). CPE focuses on modeling

the cross-domain correlation of workers, while LGE focuses

on modeling the learning gain in the worker training process.
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Fig. 3. The general pipeline of our cross-domain-aware worker selection with training algorithm.

1) Cross-domain-aware Performance Estimation: As stated

in Section I, cross-domain information is important for worker

selection. However, no correlation information between the

prior domains and the target domain is available before

worker training. Instead, worker feedback on learning tasks

is accumulatively arriving, which requires a mining algorithm

to dynamically capture the cross-domain correlation from

scratch. In this subsection, we introduce our CPE estimation

scheme, which 1) derives statistically analyzed expectation of

accuracy and 2) supports online updates with a Maximum

Likelihood Estimation as the base. We present the whole CPE

estimation in Algorithm 1.

In order to model the correlation between workers’ prior

domain knowledge and the target domain knowledge, we

adopt the multivariate normal distribution [44]. Precisely, to

model the relationship between the D prior domains and the

target domain effectively, we adopt a (D + 1)-dimensional

multivariate normal distribution N (μ,Σ), where μ ∈ R
(D+1)

and Σ ∈ R
(D+1)×(D+1):

μ = [μ1, μ2, ..., μD, μT ]
T, (1)

Σ =

⎡
⎢⎢⎢⎢⎣

σ2
1 ρ1,2σ1σ2 ... ρ1,Dσ1σD ρ1,Tσ1σT

ρ2,1σ2σ1 σ2
2 ... ρ2,Dσ2σD ρ2,Tσ2σT

... ... ... ... ...
ρD,1σDσ1 ρD,2σDσ2 ... σ2

D ρD,TσDσT

ρT,1σTσ1 ρT,2σTσ2 ... ρT,DσTσD σ2
T

⎤
⎥⎥⎥⎥⎦ ,

(2)

the μi, σi, ρi,j where i �= j and i, j ∈ {1, 2, ..., D, T} are

the mean and standard deviation of worker accuracy on each

domain and the correlation parameters between any pair of

domains respectively.

The annotation accuracy for each worker wi on each domain

is modeled as a (D + 1)-dimensional random vector vi =
[hi,1, hi,2, ..., hi,D, hi,T ]

T ∈ R
(D+1), where vi ∼ N (μ,Σ).

As shown in Figure 3, we perform CPE (Algorithm 1) in

each elimination round. Specifically, each worker is assigned

(� t
|Wc|�) learning tasks and we record the answers for each

worker wi: ai,c = [ai,c,1, ai,c,2, ..., ai,c,� t
|Wc| �] and store to Ac.

For each worker, we compute the number of correct and wrong

answers as follows:

Ci,c =

�t/|Wc|�∑
j=1

(ai,c,j = gj,c), (3)

Xi,c = �(t/|Wc|)� − Ci,c. (4)

Given each worker’s correct and wrong answers in each

round, we adopt Maximum Likelihood Estimation to estimate

μ and Σ. The log-likelihood function L is formulated as

follows:

logL =

|Wc|∑
i=1

logP (hi,T |hi)

=

|Wc|∑
i=1

log

∫ 1

0

h
Ci,c

i,T (1− hi,T )
Xi,c

e−Ψ√
2π|Σ̄|dhi,T

=

|Wc|∑
i=1

[
log

∫ 1

0

h
Ci,c

i,T (1− hi,T )
Xi,ce−Ψdhi,T

+ log
1√
2π

− 1

2
log |Σ̄|],

(5)

where μ̄ and Σ̄ are the conditional distribution of the multi-

variate normal distribution N (μ,Σ):

μ̄ = μT +Σ1×DΣ−1
D×D(hi − μ1∼D),

Σ̄ = Σ1×1 − Σ1×DΣ−1
D×DΣD×1,

and Ψ =
(hi,T−μ̄)T(hi,T−μ̄)

2Σ̄
.

In real-world applications, these parameters are updated

under a large amount of streaming data, where directly cal-

culating the optimal parameters is unacceptable. To enable

an incremental parameter estimation, we update μ and Σ by

maximizing Equation (5) with gradient descent in each round:

μ′ = μ− r1∇μ logL, (6)

Σ′ = Σ− r2∇Σ logL, (7)

where r1 and r2 are the learning rates of gradient descent

for μ and Σ; μ′ and Σ′ are the updated μ and Σ at the

current gradient descent step. After obtaining the Maximum

Likelihood Estimation of the mean μ̂ and standard deviation Σ̂,

we obtain the predicted annotation accuracy for each worker

wi with the updated multivariate normal distribution N̂ (μ̂, Σ̂):

pc,i = E[hi,T |hi]

=

∫ 1

0

hi,TP (hi,T |hi)dhi,T

=

∫ 1

0

hi,T
P (hi, hi,T )

P (hi)
dhi,T ,

(8)

where [hi, hi,T ]
T ∼ N̂ (μ̂, Σ̂) and [hi]

T ∼ N̂ (μ̂1∼D, Σ̂D×D).
pc,i is used as the estimated worker accuracy in the target

domain instead of a coarse observation on Ci,c and Xi,c.
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Fig. 4. An illustration of the learning task (left) and its corresponding ground
truth answer (right). The learning tasks will be displayed to the workers. After
they complete their current round answers, the ground truth will be revealed
for them to learn.

Algorithm 1 Cross-domain-aware Performance Estimation

(CPE)

Input:
The answers of workers in current round Ac

The learning tasks ground truth in current round Gc

The historical accuracy of workers in current round Hc

The number of workers remaining in current round |Wc|
Output:

The predicted accuracy of remained workers pc
1: Initialize pc to be an empty array

2: Initialize the multivariate normal distribution N (μ,Σ)
3: Compute the number of correct and wrong tasks of each

worker Ci,c, Xi,c according to Equations (3) and (4)

4: Compute updated distribution N̂ (μ̂, Σ̂), where

μ̂, Σ̂ = argmax
μ,Σ

logL(N , {Ci,c, Xi,c}|Wc|
i=1 )

5: for each hi in Hc do
6: Compute pc,i via Equation (8) and append to pc
7: end for
8: return pc

2) Learning Gain Estimation: Through the interactive

mode displayed in Figure 4, workers not only provide feedback

but also learn from the results. This training process plays

an important role in crowdsourcing [20], [22], but is hardly

studied together with worker selection. This motivates us

to enhance worker estimation with training, which aims at

capturing the changes in estimated target domain performance

for workers. This further enables us to quantize each worker’s

learning gain after assigning a certain amount of learning

tasks to get a more accurate dynamic estimation of workers’

performance on Tw.

In order to capture the learning gains, we adopt the item

response theory model used for capturing the student learning

process from the previous work [35], [47]. In the original IRT

model [35], [47], considering a worker wi, the probability that

wi answers question q from domain d correctly is:

pd(θi) = (1 + e−(θi−βd))−1, (9)

where θi is the proficiency parameter of the worker and βd is

the difficulty parameter of the question q from domain d. In

our setting, θi = αi ln(Kj + 1), which is proportional to the

logarithm of the cumulative number of learning tasks (Kj =
(2j−1)∗t

|W | for the target domain) assigned to worker wi, while

αi is computed through least square regression and will be

discussed in Equation (11). Different difficulty parameters are

assigned to tasks in different domains, denoted as β1∼D for

tasks in prior domains and βT for tasks in the target domain.

The modified item response theory model for a single worker

wi at the learning stage j on the domain d is:

p̂j,i,d = g(αi, βd,Kj)

=
1

1 + e−(αi ln(Kj+1)−βd)
.

(10)

The last step before one can further estimate the dynamic

performance after training instead of a static performance is to

get the update formula for the intrinsic learning parameter αi

of each worker in each round. We update the learning param-

eter αi by minimizing the following least square regression

objective:

αi = argmin
αi

[ D∑
d=1

(p̂1,i,d − hi,d)
2 +

c∑
j=1

(p̂j−1,i,t − pj,i)
2

]
,

(11)

which comprises two parts: the first part minimizes gaps

between learning gain estimations and accuracy on D prior

domains; the second part minimizes each pair of worker

accuracy estimated by Equation (10) in round j − 1 and CPE

in round j. The round index is different because the CPE

estimation is based on the workers’ performances in round j,
where workers are only shown with j − 1 rounds of answers

(trained with j − 1 rounds). The regression is conducted in

each round to update each αi.

According to the results of each round (e.g., the jth round),

we assign tasks to workers and expect the best performance

after the training of the next round (e.g., the j + 1th round),

which can be obtained through Equation (10) (e.g., compute

p̂j+1,i,d), which is intractable for static methods. We argue

that such an estimation is closer to the actual annotation

performance on the working tasks after n rounds of training

and thus can help us get a more accurate estimate of the actual

value of hi,T for each worker wi. We display the LGE in

Algorithm 2.

D. Worker Selection

Based on the above estimations, we propose our algorithm

for worker selection in this subsection, where a theoretical

guarantee is given. Compared with the intuitive but effective

design of the Median Elimination algorithm discussed in [19],

we have a fixed amount of budget to allocate tasks, where the

original algorithm and theory cannot be directly applied. Here,

we propose an adaptation version, displayed in Algorithm 3.

To be more specific, ME is called in rounds, where in each

round, the worst half of workers are eliminated. The algorithm

terminated with k workers left as its output. With a limited

budget, we reversely derive the number of rounds needed for
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Algorithm 2 Learning Gain Estimation (LGE)

Input:
The workers remained in the current round Wc

The historical accuracy of workers in the current round

Hc

The historical task numbers of workers in the current

round Nc

The predicted accuracy arrays p1, p2, ..., pc at the current

stage

Output:
The updated predicted accuracy with learning gains p̂c

1: Initialize p̂c as an empty array

2: Initialize the difficulty parameters in the target domain

(βT ) and prior domains (β1, β2, · · · , βD)

3: for each wi ∈ Wc do
4: Initialize the learning parameter αi

5: for domain d = 1, 2, ..., D do
6: Compute the historical accuracy hi,d

7: Compute the historical task numbers ni,d

8: Compute the IRT score p̂1,i,d = g(αi, βd, ni,d)
9: end for

10: for stage j = 1, 2, ..., c do
11: Compute the predicted accuracy for wi: pj,i
12: Compute p̂j−1,i,T = g(αi, βT ,Kj−1)
13: end for
14: Update αi according to Equation (11)

15: Compute p̂c,i,T = g(αi, βT ,Kc)
16: Append p̂c,i,T to p̂c
17: end for
18: return p̂c

elimination and allocate the budget. Specifically, given worker

pool W , number of k, total budget B, we can get the total

round n and the budget allocated in each round t as:

n = 	log(|W |/k)
, (12)

t = �B/n�. (13)

Unlike the original (ε, δ) bound formulation in [19], we

constrain the total budget used for the task and prove a

theoretical bound over error εc in each round. Specifically,

given a fixed total budget of B, the algorithm aims at finding

the top k workers. It satisfies that the best worker outputted

by the algorithm in round c + 1 is an εc-optimal worker

with respect to the best worker outputted in round c, with

a probability of least 1 − δc. The error at each round c is

bounded by O(
√

(nkB ) ln ( 1
δc
)).

Adapting from the proof of Lemma 11 in [19], we have the

following theoretical results:

Theorem 1 By applying our adapted ME algorithm, we have:

P [ max
wj∈Wc

hj,T ≤ max
wi∈Wc+1

hi,T + εc] ≥ 1− δc, (14)

where each worker is assigned ( 2
ε2c
) ln ( 3

δc
) tasks in round c.

Proof We present the proof in our technical report [4].

Algorithm 3 Median Elimination (ME)

Input:
The predicted accuracy p̂c
The workers remained in the current round Wc

Output:
The selected workers Wc+1

1: w1, w2, ..., w|Wc| = the workers sorted in non-increasing

order of their predicted accuracy p̂c
2: Wc+1 = {w1, w2, ..., w� |Wc|

2 	}
3: return Wc+1

According to the above theorem, we can derive the follow-

ing bound for our allocation scheme:

Theorem 2 In each round c of Algorithm 4, the error εc is
bounded by O(

√
(nkB ) ln ( 1

δc
)).

Proof We present the proof in our technical report [4].

E. Summary

The algorithm regarding the whole pipeline is summarized

in Algorithm 4. Workers with historical profiles (prior domain

performance) are first assigned target domain learning tasks

for training purposes (Line 9 of Algorithm 4). The annota-

tion accuracy is recorded, then we enter the worker quality

estimation phase (Lines 13-14 of Algorithm 4): we perform

Cross-domain-aware Performance Estimation to generate an

estimation of the worker accuracy, and we further use Learning

Gain Estimation to estimate the performance gains. Finally, we

perform worker selection (Line 15 of Algorithm 4) by applying

Median Elimination in each round to select the best half of

workers. After n rounds of looping, we obtain the selected

best k workers on the target domain tasks. As for the time

complexity, as shown in Algorithm 4, we have n iterations.

Let G be the number of gradient descent epochs performed

to maximize Equation 5. In each iteration, we perform CPE,

LGE, and ME, which take O(G|Wc|), O(|Wc| log(|Wc|/k)),
and O(|Wc| log(|Wc|)), respectively. Therefore, the overall

time complexity for the worker quality estimation and selec-

tion process is O(n|W |(G+ log(|W |))). We do not consider

the time for workers to complete the learning tasks when

analyzing the time complexity and we will discuss this in

Section V-H.

Note that our solution is not restricted to the case where

workers have been working on all the D domains. For each

domain d, if worker wi does not have historical record hi,d,

we can remove the corresponding dth row and line in μ and
∑

of Equation (5) for worker wi and remove the addition term

(p̂1,i,d−hi,d)
2 in Equation (11), so that our approach can still

work if any workers have not been working on all the prior

domains. In this way, one can easily adapt our approach to

suit the general cases.

V. EXPERIMENTS

A. Datasets

Currently, no publicly available dataset records both the

cross-domain worker historical profiles and the worker training
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Algorithm 4 General Algorithm

Input:
A set of workers wi ∈ W , a set of learning tasks tj ∈ Tl

Workers’ historical accuracy hi = {hi,1, hi,2, ..., hi,D}
Workers’ historical task number ni = {ni,1, ni,2, ..., ni,D}
Total budget B
Probability δ

Output:
The set of selected top k workers WT

1: Set n, t as Equations (12), (13), W1 = W , and δ1 = δ
2: Initialize the current learning task index r1 = 1
3: for c = 1, 2, ..., n do
4: Set Ac to be an empty set

5: Set the ground truth labels of tasks trc to trc+(� t
|Wc| �)

as Gc = [g1,c, g2,c, ..., g� t
|Wc| �,c]

6: Set the historical accuracy of Wc as Hc =
{h1, h2, ..., h|Wc|}

7: Set the historical task number of Wc as Nc =
{n1, n2, ..., n|Wc|}

8: for each wi ∈ Wc do
9: Assign learning tasks trc to trc+(� t

|Wc| �) to wi in

batches, reveal the correct answers after wi submits

10: Get the answers ai,c of wi store to Ac

11: end for
12: rc+1 = rc + (� t

|Wc|�)
13: The predicted accuracy pc = CPE(Ac, Gc, Hc, |Wc|)
14: The updated predicted accuracy with learning gains

p̂c = LGE(Wc, Hc, Nc, p1, p2, ..., pc)
15: Wc+1 = ME(p̂c,Wc), δc+1 = δc

2
16: end for
17: Set WT to be the top k workers with highest p̂n in Wn+1.

If |Wn+1| < k, set WT to be the top k workers with

highest p̂n−1 in Wn.

18: return WT

TABLE II
DATASET STATISTICS

Datasets |W| Q k total # of batches B
RW-1 27 10 7 3 540
RW-2 35 10 9 3 700
S-1 40 20 5 7 2400
S-2 50 20 5 7 3000
S-3 80 20 5 15 6400
S-4 160 20 5 31 16000

process. Therefore, we have to construct new datasets that

cover the two aspects of information to evaluate the perfor-

mance of our method and the baselines. To this end, we build

real-world and synthetic datasets, summarized in Table II. We

denote the number of learning tasks per batch as Q. The

total budget B = 	log( |W |
k )
 ∗ Q ∗ |W |, # of batches =

2�log
|W |
k 	−1. Note that Q and k are the independent variables,

while # of batches and B are dependent variables. We generate

different synthetic datasets with different |W | to study the

influence of the size of the worker pool.

Real-world datasets: We invited 27 and 35 workers to com-

plete the Qualtrics survey [25] through volunteer recruitment

TABLE III
DETAILS OF REAL-WORLD DATASETS

Dataset Domain Features Knowledge Sources
RW-1 prior-1 Elephant Color, Shape Animal [45]
RW-1 prior-2 Clownfish Color, Shape Animal [8], [9], [28]
RW-1 prior-3 Plane Size Machine [33]
RW-1 target Petunia Color, Shape Plant [36]
RW-2 prior-1 Peruvian lily Color Plant [36]
RW-2 prior-2 Red fox Shape Animal [16]
RW-2 prior-3 English marigold Shape Plant [36]
RW-2 target Lenten rose Shape Plant [36]

and gMission [12] and denoted as RW-1 and RW-2 datasets.

The tasks are Yes/No questions regarding image classification

on three prior domains and one target domain. We chose

Yes/No questions since many complex question types such as

MCQs can be transformed from them [18], [21]. We present

the detailed information of the two real-world datasets in

Table III. Specifically, RW-1 examines workers’ prior domain

knowledge of animals (elephant and clownfish) and machines

(plane) and evaluates their performance on plants (petunia).

The key features that workers need to distinguish petunias

from other flowers are color and shape. We also include RW-

2 as a complement to RW-1: RW-2 focuses on finer-grained

domains where the Peruvian lily, English marigold, and Lenten

rose are all flowers. The key features that workers need to

focus on differ: Peruvian lilies can be distinguished based

on their color, while English marigolds and Lenten roses

require detailed observation of petal and stamen shapes. By

conducting experiments on both RW-1 and RW-2, we can

comprehensively evaluate the performance and robustness of

our approach and obtain interesting insights into cross-domain

worker training. On each prior domain, each worker is asked

to complete two batches of tasks. Each batch consists of 5

learning tasks and 5 working tasks. The answers are recorded

to form the historical profiles of the workers. In the target

domain, each worker needs to answer 30 learning tasks and

30 working tasks for us to record the worker training process.

The learning and working tasks are assigned to each worker

in batches. In each batch, workers are required to complete

10 learning tasks first, check the ground truth answers of

the learning tasks, and then complete 10 working tasks. The

learning tasks are used to train the workers gradually, while

the working tasks are applied to test workers’ annotation

performance in the target domain. A sample learning task is

shown in Figure 4. Only the answers to the learning tasks are

used as the algorithm input. The answers to the working tasks

are used to evaluate the performance.

Synthetic datasets: We further constructed synthetic datasets

based on the distribution of the RW-1. We considered the

synthetic datasets with worker pool sizes of 40, 50, 80, and 160
to simulate the different supply conditions. We set the number

of learning tasks per batch on primal domains and the target

domain to 10 and 20, respectively, on S-1, S-2, S-3, and S-4

datasets. We started by modeling the relationship among the

four domains with a truncated multivariate normal distribution

N(μ,Σ) within (0, 1), where the mean and standard deviation

of the three prior domains are computed based on the learning
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TABLE IV
MEAN AND STANDARD DEVIATION OF RW-1 AND SYNTHETIC DATASETS

Dataset Prior 1 Prior 2 Prior 3 Target
RW-1 (0.70, 0.22) (0.88, 0.10) (0.58, 0.25) (0.55, 0.17)
S-1 (0.72, 0.23) (0.86, 0.13) (0.53, 0.29) (0.49, 0.18)
S-2 (0.64, 0.27) (0.83, 0.15) (0.51, 0.25) (0.51, 0.20)
S-3 (0.66, 0.26) (0.87, 0.13) (0.54, 0.27) (0.50, 0.18)
S-4 (0.68, 0.25) (0.87, 0.13) (0.54, 0.27) (0.50, 0.18)

task result of the workers on the three corresponding domains,

while the mean and standard deviation of the target domain

is calculated based on the first batch learning task results in

the RW-1 dataset. The correlation parameters shown in Equa-

tion (2) are uniformly random initialized within (0, 1). Each

synthetic worker was sampled from N as [h1, h2, h3, hT ]
T,

where hT ∈ (0, 1) denotes the probability that the worker

answers the target domain tasks correctly. We can thus obtain

the annotation accuracy on the target domain learning tasks

with the following answering rule: randomly select a number
x in (0, 1) if x < hT , then the worker answers correctly.
Otherwise, the worker answers wrongly. We obtained the

annotation accuracy of synthetic workers on the first batch

of learning tasks and applied the modified IRT model in

Equation (10) to get the learning parameter αi for each worker.

Then we updated each worker’s hT after each batch based

on the modified IRT model with each worker’s αi and the

annotation accuracy generated with the answering rule. The

top-k high-quality workers were selected based on the value

of hT in the last batch.

Consistency: Notice that the synthetic datasets are generated

based on RW-1, we now study the consistency between their

distributions. As shown in Table IV, the computed mean and

standard deviation of the multivariate normal distributions for

RW-1 and synthetic datasets are close in the target and prior

domains. Besides, we present the distribution of workers’

annotation accuracy on the target domain for RW-1, S-1, S-2,

S-3, and S-4 in our technical report [4]. The real-world dataset

RW-1 and the four synthetic datasets generated have similar

distributions on the target domain. Specifically, we bucket

the annotation accuracy, compute the Pearson correlations

between RW-1 and each synthetic dataset, and find that all

Pearson correlations ρ’s are larger than 0.75, which validates

the consistency.

B. Baselines

In our experiment, we compared our proposed method with

the general worker selection algorithms Median Elimination

(ME), Uniform Sampling (US) discussed by [11], [19] and Li

et al.’s method [31]. We chose these baselines because they do

not require additional social interaction information (required

by [48], [52]) and are comparable in terms of tasks and goals

(Liu et al. [32] focus on optimizing the number of golden

questions used, while the worker selection algorithm used is

US [19]; Yadav et al. [49] aim at forming high-performance

worker teams, which is not comparable under our problem

setting). We introduce the baselines as follows:

• Uniform Sampling (US) [11], [19]: Assign each worker the

same amount of learning tasks and select the top-k workers

that have the highest accuracy.

• Median Elimination (ME) [11], [19]: Assign each worker
t

|Wc| learning tasks in round c, after each round, apply

Algorithm 3 to select the best half of workers.

• Li et al. [31]: Adopt linear regression on the multiple

features of workers and then select workers based on the

regressed values. In our experiment, we use the historical

profiles as the features for the regression process.

US and ME focus on selecting high-quality workers based

on their annotation performance in the worker training pro-

cess, while the Li et al. approach focuses on employing the

historical profile features to identify high-quality workers.

C. Experiment Setting

To ensure fairness, we allocated the same amount of budget

for our method and the baselines. The methods’ performances

are evaluated with respect to the average annotation accuracy

of the selected workers on the target domain working tasks

in the last round. For example, in RW-1 and RW-2 datasets,

the worker medium elimination process terminates in two

rounds. We used the annotation accuracy on the working

tasks in the second round as the performance criteria. The

difficulty parameters of prior domains βd were initialized

as βd = ln( 1
ad

− 1), where ad is the averaged annotation

accuracy for all the real workers on the domain d. For the

target domain, we set βT = 0 so that Equation (10) would be

0.5 when Kj = 0. Since the tasks are Yes/No questions, we

believe that aT = 0.5 is a good choice when no prior knowl-

edge regarding the target domain tasks is given. We further

conducted a parameter sensitivity experiment in Section V-F

to validate our choice. We adopted the same initialization

setting regarding the difficulty parameters for the synthetic

datasets. The initial multivariate normal distribution N(μ,Σ)
was generated as follows: μ1, μ2, ..., μD and σ1, σ2, ..., σD

were initialized based on the mean and variance of workers’

annotation accuracy on the corresponding prior domains; μT

was initialized to 0.5, and σT was initialized as 1
D

∑D
d=1 σd.

The correlation parameters were uniformly random initialized

in the (0, 1) range. The gradients with respect to μ̄ and Σ̄
in the log-likelihood function L (Equation (5)) was computed

based on backpropagation [46]. We set the learning rates used

for gradient descent as r1 = 1e − 7, r2 = 1e − 4, and the

epochs for gradient descent as G = 50. The average accuracy

of each method was recorded. The implementation and data

are available at https://github.com/ysunbp/crowdsourcing.

D. Experiment Results

We present the experiment results regarding the best-k

worker average annotation accuracy and the relative improve-

ments of our method over baselines in Table V. The ground

truth results are presented in the bottom line of Table V. In

general, we observe that our method performs the best baseline

approach on real-world and synthetic datasets. Specifically, on

RW-1 and RW-2 datasets, our method outperforms US [11],
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TABLE V
EXPERIMENT RESULTS

RW-1 RW-2 S-1 S-2 S-3 S-4
US [11], [19] 0.764 (4.5% ↑) 0.956 (0.5% ↑) 0.765 (8.5% ↑) 0.775 (6.8% ↑) 0.815 (4.3% ↑) 0.865 (2.4% ↑)
ME [11], [19] 0.771 (3.5% ↑) 0.944 (1.8% ↑) 0.720 (15.3% ↑) 0.785 (5.5% ↑) 0.795 (6.9% ↑) 0.880 (0.7% ↑)
Li et al. [31] 0.771 (3.5% ↑) 0.936 (2.7% ↑) 0.780 (6.4% ↑) 0.805 (2.9% ↑) 0.845 (0.6% ↑) 0.870 (1.8% ↑)
ME-CPE 0.781 (2.2% ↑) 0.950 (1.2% ↑) 0.785 (5.7% ↑) 0.790 (4.8% ↑) 0.838 (1.4% ↑) 0.875 (1.3% ↑)
Ours 0.798 0.961 0.830 0.828 0.850 0.886
Ground Truth 0.914 1.000 0.885 0.875 0.915 0.975

Fig. 5. The sensitivity analysis regarding the initialized annotation accuracy
of the target domain: aT = 1

1+eβT
on different datasets.

[19] by 4.5% and 0.5%, while boosting the performance of

ME [11], [19] by 3.5% and 1.8%, and Li et al. [31] by 3.5%
and 2.7%, respectively. On the four synthetic datasets, our

method outperforms US, ME, and Li et al. by 5.5%, 7.1%,

and 2.9% on average. We attribute the performance uplift of

our method over US and ME to the fact that we additionally

consider the cross-domain historical profile information of

workers and apply proper simulation of the learning gain

of workers during the worker training process. The reason

why our approach outperforms Li et al. can be attributed to

the appropriate worker elimination process applied and the

proper simulation of the learning gain of workers. We further

notice that the average relative performance uplifts of our

approach over the three baselines are 10.1%, 5.1%, 3.9%, and

1.6%, which decrease as the number of workers increases.

We attribute this phenomenon to the fact that the number of

high-performance workers increases as the size of the worker

pool gets large. As a result, the accuracy difference induced by

different worker selection strategies of different approaches is

likely to decrease, and thus the performance uplift becomes

smaller as the size of the worker pool increases. Overall,

our method performs persistently well on both real-world

and synthetic datasets, which implies the effectiveness and

robustness of our approach for cross-domain worker selection.

E. Ablation Study

We conducted an ablation study regarding the following

variants to understand the mechanism of different components:

• ME [11], [19]: ME is the backbone of our method, where

the CPE and LGE (Worker Quality Estimation) are removed.

• ME-CPE: ME-CPE is a variant of our method where the

LGE component is removed.

We present the experiment results in Table V. We compare

ME [11], [19] with ME-CPE to demonstrate the effect of the

Cross-domain-aware Performance Estimation. The comparison

between ME-CPE and our method shows the influence of

the Learning Gain Estimation. First, we note that ME-CPE

outperforms ME by 1.3% and 0.6% and our method further

boosts the performance of ME-CPE by 2.2% and 1.2% on

RW-1 and RW-2 datasets. This shows the effectiveness brought

by CPE and LGE in estimating worker quality. CPE helps the

algorithm capture the cross-domain information to estimate the

annotation ability of workers, while LGE captures the learning

gain of workers during the worker training process. On S-1, S-

2, S-3, and S-4 datasets, our method improves over ME-CPE

by 5.7%, 4.8%, 1.4%, and 1.3% respectively. We attribute the

performance improvement of our method over ME-CPE to the

LGE component, which obtains a more accurate estimation of

workers’ performance in the target domain during training.

ME-CPE outperforms ME by relatively 9.0%, 0.6%, and

5.4% on S-1, S-2, and S-3 datasets while performing slightly

worse than ME on the S-4 dataset. On average, ME-CPE

relatively improves the performance of ME by 3.6% on the

four synthetic datasets. In general, ME-CPE can improve or

achieve comparable performance as ME. The CPE component

can effectively capture the cross-domain information, which is

helpful for identifying high-quality workers.

F. Method Parameter Sensitivity

We analyzed the impact of the critical parameter of our

method aT , which is the initialized annotation accuracy of the

target domain and is related to the initialization of the difficulty

parameter βT (aT = 1
1+eβT

). Figure 5 presents the results. We

notice that the performance of our method is relatively stable

when the value of aT is set within the range [0.2, 0.8]. In

practice, we suggest setting at according to the difficulty level

of the tasks. If the tasks are relatively easy, a large value of

aT can be adopted. Otherwise, a small value of aT should be

considered. If no domain knowledge regarding the difficulty

level is available, we can set the value of aT based on the

nature of the tasks. Since our tasks are Yes/No quuestions,

a natural choice of aT would be 0.5. The sensitivity analysis

coincides with our selection of aT in Section V-C: our method

achieves a stable and good performance when aT = 0.5.

G. Dataset Parameter Sensitivity

To comprehensively compare the performance of our

method and baselines, we further conducted experiments

regarding the important dataset parameters: the number of

selected workers k and the number of learning tasks per batch

Q. Since the number of learning tasks per batch cannot be

changed once the RW datasets are collected, we conducted

experiments on the four synthetic datasets to analyze its effect.
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(a) Value of k (RW-1 dataset) (b) Value of k (RW-2 dataset) (c) Value of k (S-1 dataset)

(d) Value of k (S-2 dataset) (e) Value of k (S-3 dataset) (f) Value of k (S-4 dataset)

Fig. 6. Parameter sensitivity experiments of the number of selected workers.

The value of k determines the number of rounds n required

to obtain the top-k workers. As shown in Table II, the values

of k used in our main experiments are 7 and 9 for the RW-

1 and RW-2 datasets and 5 for the four synthetic datasets,

which leads to 2 rounds for RW-1 and RW-2 datasets, 3 rounds

for the S-1 and S-2 datasets, 4 rounds for the S-3 dataset,

and 5 rounds for the S-4 dataset. In the parameter sensitivity

experiment presented in this section, we further increased the

value of k to 14 and 18 for RW-1 and RW-2 datasets, 10

and 20 for the S-1 and S-2 datasets, and 10, 20, and 40

for the S-3 and S-4 datasets. The reason for experimenting

with the increased number of k is to present a comprehensive

view of the performance of our approach from the beginning

stage of worker selection (when the value of k is large) to

the ending stage of worker selection (when the value of k is

small). For example, when changing the value of k from 14

to 7 on the RW-1 dataset, we can analyze the performance

change of our method when conducting one round and two

rounds of eliminations. As shown in Figures 6a and 6b, on

RW-1 and RW-2 datasets, our method consistently outperforms

all the baseline approaches, when we increase the value of

k. On the synthetic datasets S-1, S-3, and S-4, as shown in

Figures 6c, 6e, and 6f, our approach still outperforms all the

baselines when the value of k increases. On the S-2 dataset

(Figure 6d), our approach outperforms all the baselines when

the value of k is set to 5 and 10, while is slightly worse

than the performance of Li et al. [31] when the value of k
further increase to 20. We further observe that on the RW-1

dataset, when k = 14, our approach and Li et al. have similar

performance. Similar phenomena can also be observed on the

S-1, S-3, and S-4 datasets when we set the value of k to

20, 40, and 40. We attribute this to the fact that when the

value of k is large (i.e., the model is at the beginning stage

of elimination), the long-term learning improvement of the

workers on the target domain is not yet significant, the linear

regression approach introduced by Li et al. [31] can capture the

static cross-domain information. However, as the value of k

decreases (i.e., the elimination process proceeds), the dynamic

cross-domain performance estimation and the learning gain

estimation help our approach to outperform Li et al. [31].

As for the number of learning tasks Q, the default value

is 20. We changed the value of Q to 16, 30, and 40, while

keeping the value of k unchanged with a changing total

budget B in this section to evaluate its influence and presented

the experimental results in Figure 7. We first notice that

our approach consistently outperforms all baselines on four

synthetic datasets with different Q. We further observe that

on four synthetic datasets, the performance of our approach

and baselines tends to get close when Q increases. We attribute

this phenomenon to the fact that when the budget is arbitrarily

large, the improvement brought by adopting cross-domain

information is reduced since the algorithm can get an accurate

estimation of workers’ target domain knowledge based on a

large amount of learning tasks assigned to workers. However,

when the total budget is small, our approach efficiently utilizes

the cross-domain information to boost the worker selection

performance of ME. In real-world applications, selecting

workers effectively with a relatively small number of learning

tasks is crucial, since in reality, the ground truth answers of

golden questions in each domain require manual collection

and thus are hard to obtain. In this sense, the performance

uplift of our approach over other baselines when Q is small

is favored and useful for real-world applications.

H. Discussion

We recorded the running time results on one Intel Xeon

Gold 6240 CPU @ 2.60GHz. Our method takes 3.9s, 5.0s,

6.3s, 7.8s, 13.4s, and 28.9s to select the best workers on the

RW-1, RW-2, S-1, S-2, S-3, and S-4 datasets. Compared with

the median completion times of our two surveys (1185s and

986s), the running time cost of our method is acceptable. As

suggested by [54], the average completion time of tasks on

AMT usually takes hours; we believe that the running time can

facilitate the needs for real-world crowdsourcing applications.
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(a) Learning tasks Q (S-1 dataset) (b) Learning tasks Q (S-2 dataset) (c) Learning tasks Q (S-3 dataset) (d) Learning tasks Q (S-4 dataset)

Fig. 7. The parameter sensitivity experiments of the number of learning tasks per batch Q.

The time used for workers to complete learning tasks inside

the survey is approximately 500s for the two surveys. We

observe that the average accuracy of all workers increases

from 0.55 to 0.79 and from 0.65 to 0.85 on RW-1 and RW-2

respectively after a single round of worker training with 10

questions. Despite the additional training time required, we

believe that by introducing worker training into the worker

selection process of crowdsourcing, we can significantly im-

prove the overall worker performance in the target domain. As

for the cost of the worker training process: denote the number

of learning tasks and working tasks assigned as |Tl| and |Tw|,
the annotation accuracy before and after the worker training

as at and a′t. For simplicity, we consider the effect on one

single worker with one round of training, assume the worker’s

accuracy is the same as the average accuracy of all workers,

and consider the same monetary cost for completing each

learning and working task. If |Tw|/|Tl| > at

a′
t−at

, under the

same total worker learning and working budget, the number of

correctly annotated samples in Tw for the worker with worker

training process would be greater than that without worker

training. In our case, once |Tw|/|Tl| is greater than 2.3 and 3.3

for RW-1 and RW-2 respectively, then the additional monetary

cost can be counteracted. Furthermore, our worker training

phase interacts with the workers by revealing the correct

answers to learning tasks to workers promptly. Throughout

multiple worker training rounds, workers can learn about their

overall improved performance in the target domain, have a

sense of accomplishment, and obtain new skills related to the

target domain. As discussed by previous works [15], [17], [23],

[43], with timely feedback received and new skills learned,

workers tend to have improved engagement and performance.

Therefore, we believe the worker training phase improves the

engagement of workers, and stimulates workers to explore

more useful features in the target domain.

We further report the estimated correlation between domains

on the RW-1 and RW-2 datasets. Specifically, the correlation

parameters estimated by our method are 0.50, 0.69, and

0.65 for Plane-Flower (P-F), Fish-Flower (F-F), and Elephant-

Flower (E-F) on RW-1 and 0.23, 0.10, and 0.68 for Peruvian

lily-Lenten rose (P-L), Red fox-Lenten rose (R-L), and En-

glish marigold-Lenten rose (E-L) on RW-2. The correlation

parameters for F-F and E-F are larger than that for P-F, which

coincides with our intuition that workers sensitive to color

and shape differences (good at fish and elephant domains) are

likely to perform well in distinguishing flowers. The correla-

tion parameters for P-L and E-L are larger than that for R-L,

which means the workers who are good at distinguishing other

flowers are good at distinguishing Lenten roses. Besides, the

correlation for E-L is larger than P-L. To distinguish English

marigold from its counter-parts, workers need to notice the

small differences in petals and stamen (shape), which is close

to the requirement of distinguishing Lenten rose; while to

identify the Peruvian lily from its counter-parts, workers only

need to pay attention to color difference. As a result, the

correlation for E-L is larger than P-L. More details of the

prior and target domains are presented in Table III.

VI. CONCLUSION

In this paper, we formulated the cross-domain-aware worker

selection with training problem and proposed a novel algo-

rithm based on Medium Elimination to resolve it. Specifically,

two estimation components CPE and LGE are designed to

incorporate cross-domain knowledge information and capture

the learning gains during worker training. Real-world and

synthetic cross-domain-aware worker selection with training

datasets were collected to evaluate different approaches. We

conducted extensive experiments on real-world and synthetic

datasets to show that our method outperforms all the state-

of-the-art baselines on real-world and synthetic datasets. We

confirm that applying CPE and LGE can capture cross-domain

knowledge information and estimate the learning gain during

the worker training process. As a future direction, we aim to

construct a unified multi-domain taxonomy that optimizes the

worker training and selection process.
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