
Learning from Emergence: A Study on Proactively Inhibiting the
Monosemantic Neurons of Artificial Neural Networks

Jiachuan Wang

The Hong Kong University

of Science and Technology

Hong Kong SAR, China

jwangey@connect.ust.hk

Shimin Di
∗

The Hong Kong University

of Science and Technology

Hong Kong SAR, China

sdiaa@connect.ust.hk

Lei Chen
†

The Hong Kong University

of Science and Technology

(Guangzhou)

Guangzhou, China

leichen@hkust-gz.edu.cn

Charles Wang Wai Ng
†

The Hong Kong University

of Science and Technology

(Guangzhou)

Guangzhou, China

charles.ng@ust.hk

Abstract
Recently, emergence has received widespread attention from the

research community along with the success of large-scale models.

Different from the literature, we hypothesize a key factor that pro-

motes the performance during the increase of scale: the reduction of

monosemantic neurons that can only form one-to-one correlations

with specific features. Monosemantic neurons tend to be sparser

and have negative impacts on the performance in large models.

Inspired by this insight, we propose an intuitive idea to identify

monosemantic neurons and inhibit them. However, achieving this

goal is a non-trivial task as there is no unified quantitative eval-

uation metric and simply banning monosemantic neurons does

not promote polysemanticity in neural networks. Therefore, we

first propose a new metric to measure the monosemanticity of neu-

rons with the guarantee of efficiency for online computation, then

introduce a theoretically supported method to suppress monose-

mantic neurons and proactively promote the ratios of polysemantic

neurons in training neural networks. We validate our conjecture

that monosemanticity brings about performance change at differ-

ent model scales on a variety of neural networks and benchmark

datasets in different areas, including language, image, and physics

simulation tasks. Further experiments validate our analysis and

theory regarding the inhibition of monosemanticity.

CCS Concepts
• Theory of computation → Machine learning theory; Mathe-
matical optimization; • Computing methodologies→ Knowledge
representation and reasoning.

Keywords
Deep Learning, Artificial Neural Networks, Emergent Abilities,

Monosemanticity

∗
The corresponding author.

†
Also with The Hong Kong University of Science and Technology, Hong Kong SAR,

China

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0490-1/24/08

https://doi.org/10.1145/3637528.3671776

(c) Output values of a monosemantic neuron
given or not given related feature (French)

410M.L20.N4003 pre-activation

410M.L3.N333 pre-activation

(d) Output values of an arbitrarily
selected neuron given different features

O
u

tp
u

t
va

lu
es

 f
o

r
ea

ch
 f

ea
tu

re

(a) Monosemantic neuron: 1 vs. 1 (b) Polysemantic neuron: N vs. 1

inputs outputs inputs outputs

410M.L3.N333 pre-activation

Figure 1: Demonstration of important concepts with statis-
tics: (a) A monosemantic neuron (orange) ideally activates
for one specific type of feature. (b) A polysemantic neuron
(green) activates for multiple features. (c) The output val-
ues of a monosemantic neuron when different features are
inputted. Its related feature (French) produces values that
significantly stand out from other features. (d) The output
values of an arbitrarily selected neuron (layer 3, number 333)
given different features. These statistics are obtained by in-
specting the Pythia-v0 410M model [4].

ACM Reference Format:
JiachuanWang, Shimin Di, Lei Chen, and CharlesWangWai Ng. 2024. Learn-

ing from Emergence: A Study on Proactively Inhibiting the Monosemantic

Neurons of Artificial Neural Networks. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’24),
August 25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3637528.3671776

1 Introduction
The activity of artificial neural networks diminished for decades

before experiencing great success after the 2010s [17, 18]. One

major difference compared to previous models is the increasing

scale. In recent years, large neural networks havemuch larger scales

in terms of datasets, model sizes, and training quantities, which

have achieved remarkable results in various fields [10, 34]. Given

increasing scales, the performance improvements can usually be

https://orcid.org/0000-0001-6473-8221
https://orcid.org/0000-0002-7394-0082
https://orcid.org/0000-0002-8257-5806
https://orcid.org/0000-0001-6693-3151
https://doi.org/10.1145/3637528.3671776
https://doi.org/10.1145/3637528.3671776

KDD ’24, August 25–29, 2024, Barcelona, Spain Jiachuan Wang, Shimin Di, Lei Chen, and Charles Wang Wai Ng

(a) Loss increase in a smaller-size (70M) model (b) Loss increase in a middle-size (1B) model (c) Loss increase in a larger-size (6.9B) model

L
o

ss
 i

n
cr

ea
se

 (
%

)
af

te
r

n
eu

ro
n

 d
ea

ct
iv

at
in

g

The decreasing influence

of monosemantic neurons

when models get larger.

Deactivating a monosemantic neuron

increases loss only when inputs contain

its corresponding feature (French).

70M.L3.N609 pre-activation 1B.L12.N5451 pre-activation 6.9B.L21.N10838 pre-activation

Figure 2: We detect the monosemantic neurons of “French” following the sparse probing paper [13] and run the experiments on
Pythia-v0 [4]. After deactivating a monosemantic neuron for “French”, there is an increase in the loss given inputs of different
language features (e.g., Dutch and Greek) on Pythia models of different scales: (a) on the 70M Pythia-v0 model, (b) on the 1B
Pythia-v0 model, and (c) on the 6.9B Pythia-v0 model. It can be observed that these neurons are typically monosemantic, causing
a large increase in loss only when the input contains “French” (see green arrow). However, for larger models, deactivation of
these neurons leads to a smaller increase in loss (see red arrow). This gives us a hint that monosemanticity may be negatively
related to the scale and performance of larger models.

estimated under the scaling law [16], which follows stable but slow

increasing trend of power laws [22]. However, improvements that

significantly deviate from estimation occur when the scale increases.

Emergence, an intriguing phenomenon in large-scale models, refers

to the gradual improvement of model performance before the scale

reaching a certain threshold, followed by a rapid enhancement

once the threshold is surpassed [39]. Increasing evidence suggests

that the surprises may not arise from new module and architecture

designs, but rather from the underlying nature of scale changes [42].

A critical question arises: people increase the model scale and get
better results, but what has changed underlying the process?

From the perspectives of monosemantic and polysemantic neu-
rons, some pioneer works try to interpret the performance from

small to large-scale models. Through statistical analysis of the re-

lationships between neurons and input features, a neuron is con-

sidered monosemantic if it forms a 1-1 correlation with its related

input feature [3, 9] (Figure 1(a)). In contrast, polysemantic neurons

activate for several features that are weakly correlated [5, 9, 11, 35]

(Figure 1(b)). By comparing Figure 1(c) and (d), we can observe

that the activation level of a monosemantic neuron for the fea-

ture “French” is significantly different from that of the neuron for

other features and from that of other non-monosemantic neurons

for “French”. Researchers find that smaller models incur larger er-

rors [13] when an input’s related monosemantic neuron is disabled.

Following the favor of monosemantic neurons from studies on

small-scale models, existing works focus on enhancing or extract-

ing monosemanticity [9, 13, 35]. However, some evidences support

that monosemantic neurons are sparser in larger models [13, 35].

Those observations imply a positive relationship between the de-

crease in monosemanticity and the increase in model scale. In other

words, monosemanticity could be negatively related to large-scale

and good performance. In Figure 2, we conduct experiments to

show that, when a monosemantic neuron for “French” is deacti-

vated, a smaller model has a greater increase in loss than a larger

model. In this paper, inspired by those observations, we propose

an important hypothesis that the decrease of monosemantic
neurons is a key factor in achieving higher performance as
the model scale increases. Figure 5 in Appendix A of technical

report [1] shows an example analogy to demonstrate our idea.

Since the research community does not realize the above hypoth-

esis, we rather conclude the current paradigm of training neural

networks as a passive process in decreasing monosemantic neu-

rons. This raises an interesting question: can we proactively induce
the decrease of monosemantic neurons in artificial neural networks to
achieve high performance?

In this paper, we propose to learn from emergence and present a

study on proactively inhibiting themonosemantic neurons, which is

achieved in two phases: (i) monosemantic neuron detection and (ii)

monosemantic neuron inhibition. Unfortunately, it is challenging

to design detection and inhibition methods. First, strictly defining

monosemantic neurons is still under discussion in quantitative anal-

ysis, i.e., detection is impossible without a consensual definition.

Besides, existing works [13, 30, 35] for detecting the activation de-

gree of neurons introduce extra computation and may suffer from

the efficiency issue. Second, we prove that simply prohibiting the

activation of monosemantic neurons will intensify the monose-

manticity of artificial neural networks. To solve these challenges,

we first propose a new metric to measure the monosemanticity of

neurons with the guarantee of efficiency for online computation.

Then, we identify the drawbacks of simple methods and propose a

theoretically supported Reverse Deactivation method to suppress

monosemantic neurons and promote the ratios of polysemantic

neurons in training neural networks. Our contributions are sum-

marized as follows:

Learning from Emergence: A Study on Proactively Inhibiting the Monosemantic Neurons of Artificial Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

• Inspired by emergence, we propose a novel idea to study the

impact of monosemantic and polysemantic neurons on the per-

formance of artificial neural networks. Different from the liter-

ature, we propose a hypothesis that monosemanticity could be

negatively related to good performance on large-scale models.

• There is no quantitative definition of monosemanticity with high

computational efficiency. To effectively detect monosemantic

neurons, we propose a new evaluationmetric of monosemanticity

with a theoretical guarantee on online computation.

• To overcome the inherent drawback of the naive inhibition meth-

ods, we propose a theoretically supported reverse deactivation

method to suppress monosemantic neurons. It can be integrated

as a parameter-free and flexible insertion module, which can

adapt to various neural network structures and introduce no

computational overhead during testing.

• To validate the effectiveness and generalizability of our method,

we conducted tests on various tasks including language, image,

and physics simulation. The proposed method MEmeL is applied

to milestone models such as Bert, ConvRNN, and different ar-

chitectures like Transformer, CNN, and RNN. The experimental

results demonstrate that MEmeL performs well on different neu-

ral networks and corresponding tasks.

2 Preliminary
Given a training set 𝐷 = {(x, y)} of labeled examples, artificial

neural networks aim to train a neural network model 𝑓 (W; x)
parameterized by W so that the predicted output of x is close to

the ground truth y. Under the supervised learning task, we take

the cross entropy function L(W;𝐷) as the example:

min

W
L(W;𝐷) = min

W
−

∑︁
(x,y) ∈𝐷

y log 𝑓 (W; x), (1)

where x = [𝑥1, · · · , 𝑥𝑑] ∈ R𝑑 is a𝑑-dimensional vector representing

the 𝑛-th input data sample, such as a weather record series covering

𝑑 days or an image with height × width = 𝑑 pixels. Without loss

of generality, let 𝑓 (W; x) be a 𝐿-th layer fully connected neural

networks [14]. We denote ℎℓ
𝑖
, 𝜎ℓ

𝑖
(·), 𝑧ℓ

𝑖
as the input after linear

transformation, activation function, and output of the 𝑖-th hidden

unit at ℓ-th layer, respectively. Then, we may formally define the

computation within neurons as follows:

ℎℓ𝑗 =
∑︁
𝑖

𝑤 ℓ
𝑖 𝑗𝑧

ℓ−1

𝑖 , (2)

𝑧ℓ𝑖 = 𝜎ℓ𝑖 (ℎ
ℓ
𝑖), (3)

where 𝑧0

𝑖
∈ z0 = x,𝑤 ℓ

𝑖 𝑗
denotes the weight of 𝑖-th hidden neuron at

(ℓ − 1)-th layer to 𝑗-th hidden neuron at ℓ-th layer. We use o = z𝐿

to denote the model output. Existing works on monosemanticity

mainly study the layers of values outputted by activation functions

(i.e., zℓ). In contrast to other linear layers, these activated values

undergo element-wise nonlinearity and are more likely to have

independent meanings [6, 13]. Thus, without loss of generality, we

zoom in and study monosemanticity based on one single layer of

activated values, e.g., zℓ in the ℓ-th layer. Then, 𝑓 (W; x) can be

divided into a frontal model 𝑓1 (·) and a followed model 𝑓2 (·) at ℓ-th

layer of output as follows:

z = 𝑓1 (x) = 𝜎ℓ (Wℓ (· · ·𝜎2 (W2𝜎1 (W1x)) · · ·)), (4)

o = 𝑓2 (z, x) = Softmax(W𝐿 · · ·𝜎ℓ+2 (Wℓ+2𝜎ℓ+1 (Wℓ+1z)) · · ·), (5)

where the frontal model 𝑓1 (·) takes the original data x as inputs

and delivers output values in ℓ-th layer z (with the superscript ℓ

omitted for simplicity in notation.) As the rest components of the

network, the following model 𝑓2 (·) takes x and z and outputs o
(the entire model’s output), and Wℓ ∈ R𝑑ℓ×𝑑ℓ+1

denotes weights of

linear transformation from the ℓ-th layer to the (ℓ + 1)-th layer.

2.1 Activation and Monosemantic
Despite the progress of neural networks and emergence, there is no

consensus definition for an “activated” neuron and a “monoseman-

tic” neuron [9]. Here we try to summarize an intuitive introduction

to describe them.

The Concept of Activation: If an input x[𝑛] triggers a neuron
𝑧𝑖 to output a value 𝑓1 (x[𝑛])𝑖 that deviates “significantly” from
the statistical mean (i.e., 𝑧𝑖) , we say that neuron 𝑧𝑖 is activated by

input x[𝑛] . The challenge in defining activation lies in reaching a

consensus on themeaning of “significantly". Instead, we can provide

a relative definition as follows. Generally, 𝑖-th neuron at ℓ-th layer

is considered to be more activated on x[2] if:𝑧𝑖 − (𝑓1 (x[1]))𝑖
 < 𝑧𝑖 − (𝑓1 (x[2]))𝑖

 , (6)

where x[𝑛] ∈ 𝐷 is the 𝑛-th sample in the training set 𝐷 , 𝑧𝑖 is the

mean value of 𝑖-th neuron given all training samples 𝐷 at ℓ-th layer,

(𝑓1 (x[1]))𝑖 denotes the 𝑖-th output of the frontal model (i.e., 𝑧ℓ
𝑖
for

x[1]), and ∥·∥ is a distance metric. However, while this relative

definition is accurate for illustration purposes, it is not concise and

is difficult to use for further analysis.

Thus, to give a one-input-wise definition, one may rely on a

threshold to define whether a neuron is activated, such as a hard

threshold 𝜏 . If the deviation of activation value from the mean

∥𝑧𝑖 − (𝑓1 (x[𝑛]))𝑖 ∥ exceeds 𝜏 , it is generally considered that the

neuron is activated. Otherwise, it is in an inactive state. The reason

for setting 𝜏 is that neurons will generally have certain fluctuating

outputs even for those unrelated different inputs. Unfortunately,

setting a universal or adaptive 𝜏 remains to be explored. Therefore,

it is also impractical to quantify activation by the threshold.

The Concept of Monosemanticity: However, further illustration
for monosemanticity is closely related to a definition of activation

that considers only one input at a time. We provide an abstract

definition for it: 𝑎𝑐𝑡 (𝑧𝑖 , x[𝑛]), which equals 1 when 𝑧𝑖 is activated

by x[𝑛] , and 0 otherwise. One can use a task-oriented definition as

implementation.

To understand neural networks, an important research direction

is to correlate neuron activations with human-interpretable fea-

tures, such as Python and German for language processing; fur and

grass for image processing, et al.. Existing works construct feature

datasets {𝐶1, · · · ,𝐶𝑚} for𝑚 features, each containing a set of in-

puts. These feature datasets are specifically designed to partition

the inputs 𝑋 = {x}, mathematically:

∀𝑖≠𝑗𝐶𝑖 ∩𝐶 𝑗 = ∅;

𝑚⋃
𝑖=1

𝐶𝑖 = 𝑋 .

KDD ’24, August 25–29, 2024, Barcelona, Spain Jiachuan Wang, Shimin Di, Lei Chen, and Charles Wang Wai Ng

A neuron 𝑧𝑖 is “monosemantic" if it is only activated on inputs that

share a specific feature 𝐶 𝑗 , that is:

∀x𝑎𝑐𝑡 (𝑧𝑖 , x) = 1, x ∈ 𝐶 𝑗 ;∀x𝑎𝑐𝑡 (𝑧𝑖 , x) = 0, x ∉ 𝐶 𝑗

However, features are human-defined and vary a lot. In the pre-

vious study, Gurnee et al. [13] considered about 100 features, while

Trenton et al. [35] studied up to 10
5
features to fully capturemonose-

manticity. Without unified feature datasets, it is also difficult to

explicitly formalize the definition of “monosemantic". More related

works are discussed in Appendix B.

Thus, to detect monosemantic neurons, previous studies require

manually labeled feature datasets and time-consuming offline com-

putations after model training. To detect and inhibit monosemantic

neurons during training, it is necessary to define a lightweight

online metric 𝜙 (·) that does not rely on feature datasets, which

indicates the level of monosemanticity of a neuron.

2.2 Monosemanticity Inhibition
To achieve the desired output 𝑧, deep learning models use optimiza-

tion strategy 𝜔 to update parameters (W), such as minimizing the

explicit loss function through gradient descent.

However, to inhibit monosemanticity, there is no related loss

function to minimize. In this paper, we achieve this objective in

two phases.

Recall that the model 𝑓 is parameterized byW and split into a

frontal model 𝑓1 and a followed model 𝑓2 with respect to the studied

layer of neurons z.
Assume that we feed input x to 𝑓 and find 𝑧𝑖 ∈ z is monosemantic.

By using a well-designed optimization strategy 𝜔 , parameters are

updated toW∗
. By feeding the same input x into the neural network,

the frontal model, the followed model, and the layer of neurons are

updated to 𝑓 ∗
1
, 𝑓 ∗

2
, and z∗, respectively. We hope that:

• With updated 𝑓1, neuron 𝑧𝑖 is less activated for input x. Formally,

given old 𝑧𝑖 ∈ z = 𝑓1 (x) and updated 𝑧∗𝑖 ∈ z∗ = 𝑓 ∗
1
(x), we expect:

𝜙 (𝑧∗𝑖) < 𝜙 (𝑧𝑖) .

• With updated 𝑓2, the output is still robust when neuron 𝑧𝑖 is

deactivated. Formally, replace 𝑧𝑖 with a weakly activated value

𝑧′
𝑖
(i.e., 𝜙 (𝑧′

𝑖
) < 𝜙 (𝑧𝑖)) to obtain z′, we expect the loss L satisfies:

L(𝑓 ∗
2
(z′, x)) < L(𝑓2 (z′, x)).

The two phases (1) prevent the neuron from exclusively serving

only one feature type, and (2) prevent this featuremodeling from

relying solely on one neuron.

3 Methods
As discussed in Sec. 1, the existing neural network training par-

adigm is a passive process of decreasing monosemantic neurons.

To proactively reduce monosemanticity, it is an intuitive solution

to detect monosemantic neurons and inhibit them. Unfortunately,

achieving these goals is challenging because the monosemanticity

measurement does not exist and the simple inhibition method is

counterproductive. Therefore, we first propose a newmetric to mea-

sure themonosemanticity of artificial neurons with the guarantee of

computation efficiency, then introduce a theoretically supported in-

hibition method to suppress monosemantic neurons to proactively

reduce the ratios of monosemantic neurons in training artificial

neural networks.

3.1 Metric for Monosemanticity
To proactively detect monosemantic neurons, it is important to

design a metric that is general for different tasks and efficient to

calculate. However, as discussed in Sec. 2, strictly defining “acti-

vated” is still under discussion in quantitative analysis [9], which in

turn leads to the difficulty of defining “monosemantic”. Although

some pioneer works explore the measurement of monosemanticity,

these metrics are inflexible for different tasks since they require

a predefined and manually labeled feature dataset [13, 35]. To ad-

dress these limitations, we propose a robust metric 𝜙 (·) that can
accurately detect monosemantic neurons in this subsection. This

metric fulfills two important criteria: (1) generality to make the

metric do not rely on any specific dataset, (2) efficiency to enable

fast online detection during training.

Intuitively, defining monosemantic neurons mainly requires

starting from two principles: high deviation of activation value

and low frequency of activation. First, a neuron is considered “acti-

vated” when its output value for the current input deviates from

the mean value of outputs for all possible inputs. For a monoseman-

tic neuron, its value distribution is more skewed and incurs large

deviation [9]. Second, each monosemantic neuron only activates

when its corresponding feature is inputted, which rarely happens

considering the current datasets with steadily growing scales of

samples and feature types. Following two principles, we formally

define our metric Monosemantic Scale (MS for short) as follows.

Definition 3.1 (Monosemantic Scale). Given a neuron 𝑧𝑖 ∈ z, we
denote its historical samples under𝑚 inputs {x[1] , x[2] , · · · , x[𝑚] }
as {𝑧 [1]

𝑖
, 𝑧

[2]
𝑖

, · · · , 𝑧 [𝑚]
𝑖

} and new value under the (𝑚 + 1)-th input

x[𝑚+1]
as 𝑧

[𝑚+1]
𝑖

. The Monosemantic Scale is defined as:

𝜙 (𝑧 [𝑚+1]
𝑖

) =
(𝑧 [𝑚+1]
𝑖

− 𝑧𝑖)2

𝑆2
, (7)

where

𝑧𝑖 =

∑𝑚
𝑗=1

𝑧
[𝑗]
𝑖

𝑚
, 𝑆2 =

∑𝑚
𝑗=1

(𝑧 [𝑗]
𝑖

− 𝑧𝑖)2

𝑚 − 1

,

are the sample mean and sample variance, respectively.

In the following contents, we will focus on this single neuron

and use 𝑧 for simplicity.

As shown in Eq. (7), the measurement 𝜙 (·) is proportional to the
degree of deviation from the mean. The high deviation of the acti-

vation value ensures that the term (𝑧 [𝑚+1] −𝑧)2
in 𝜙 can effectively

identify neurons with high monosemanticity. Besides, the metric

is inversely proportional to the degree of fluctuation because the

size of the deviation is also highly correlated with the fluctuation

of the activation value on the current data set. Since 𝑧𝑖 is mainly

determined by the values when the neuron is deactivated, using

the mean as the benchmark for evaluating deviations ensures that

the defined neurons with high activation values are rare, i.e., low

frequency.

As discussed in Sec. 1 and 2, prior works need to first find the

neuron-feature relationships [13, 35] under the manually defined

feature data set. Instead, we relax the requirement of discovering

Learning from Emergence: A Study on Proactively Inhibiting the Monosemantic Neurons of Artificial Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

corresponding features and eliminate the need for a predefined

feature set since we focus on finding monosemantic neurons.

Metric Online Computing Guarantee. It is mandatory to com-

pute themetric𝜙 (·) to avoid excessive computational burden caused

by detectingmonosemanticity. As discussed in Sec. 2, pioneer works

(e.g., pairwise comparison in Eq. (6)) and other detection methods

like probes necessitate training and offline inference for statistical

analysis may be costly for online training. Here we show that for

each neuron, our proposed MS 𝜙 (·) can be obtained by keeping

track of 2 variables in constant time (𝑂 (1)). Since inputs are typi-
cally received in batches (with the number of new samples being

greater than 1) during the training of deep learning models, we

present the following lemma for training with a batch size of 𝑏.

Lemma 3.2. Denote 𝜇𝑚 as the value of the sample mean 𝑧 given
𝑚 samples, while 𝜐𝑚 as the sample variance 𝑆2. When the (𝑚 +
1)𝑡ℎ ∼ (𝑚 + 𝑏)𝑡ℎ samples 𝑧 [𝑚+1] , · · · , 𝑧 [𝑚+𝑏] come, one can obtain
the updated values via:

𝜇𝑚+𝑏 =
𝑚𝜇𝑚 + 𝑏𝜇′

𝑏

𝑚 + 𝑏 , (8)

𝜐𝑚+𝑏 =
𝑚𝑏 (𝜇𝑚 − 𝜇′

𝑏
)2

(𝑚 + 𝑏 − 1) (𝑚 + 𝑏) +
𝑏𝜐′

𝑏
+ (𝑚 − 1)𝜐𝑚
𝑚 + 𝑏 − 1

, (9)

where 𝜇′
𝑏
=

∑𝑏
𝑖=1

𝑧 [𝑚+𝑖]
𝑏

and 𝜐′
𝑏
=

∑𝑏
𝑖=1

(𝑧 [𝑚+𝑖]−𝜇′𝑏)
2

𝑏
, which is of 𝑂 (1)

time and memory complexity as 𝑏 is a constant.

The proof is given in Appendix D.1 in technical report [1]. In

the implementation, we introduce a forgetting mechanism during

model updates, where the influence of previous samples should

decay. For details, please refer to Algorithm 1 in Appendix A.1.

3.2 Inhibition of Monosemanticity
After defining a quantitative metric in Sec. 3.1, it is intuitive to in-

hibit those monosemantic neurons directly. Unfortunately, simply

deactivating monosemantic neurons will intensify the monoseman-

ticity of neural networks. In this subsection, we will first prove

the weakness of the native solution in Sec. 3.2.1. To address this

unexpected phenomenon, we propose a theoretically supported

reverse deactivation method in Sec. 3.2.2.

3.2.1 Naive Deactivation. Recall that given a monosemantic neu-

ron 𝑧 and an input x that contains its exclusive feature, we aim

to optimize the model in two aspects: (1) decrease the activation

level of 𝑧 when given x (Figure 3(b)); and (2) reduce the reliance of

output o on the activation of 𝑧 (Figure 3(c)).

Without loss of generality, we focus on the most monosemantic

single neuron 𝑧 in a layer of neurons z. As defined in Sec. 3.1,

such a neuron has a large 𝜙 (𝑧) = (𝑧 − 𝑧)2/𝑆2
, which is expected

to be inhibited during model optimization. From the perspective

of information theory, suppose that the distribution of activation

values follows a normal distribution, a neuron provides the least

amount of information 𝐼 (𝑧) when its value equals its statistical

mean:

min

𝑧
E[𝐼 (𝑧)] = min

𝑧
E[− log(𝑃 (𝑧))] = −E log(𝑃 (𝑧)),

which is also its most inactive state. 𝑃 (·) represents the probability
density function of values of 𝑧.

Thus, a straightforward idea to deactivate 𝑧 is to modify its value

to 𝑧. We denote the modified neuron as 𝑧′. One can find two naive

solutions to deactivate a neuron:

way(𝑎) : 𝑧′ = 𝑧𝑛𝑔, (10)

way(𝑏) : 𝑧′ = 𝑧 + (𝑧 − 𝑧)𝑛𝑔, (11)

where subscript ·𝑛𝑔 refers to a “no gradient" fixed-value scalar

without trainable parameters, compared with 𝑧 ∈ z = 𝑓1 (x) which
is updatable. Two examples are given in Figure 3(e,f). Both solutions

ensure that 𝑓2 receives an updated 𝑧
′
, in which the value ofV(𝑧′) =

𝑧 provides little information. As 𝑧′ is valueless, 𝑓2 has to adjust its

parameter to utilize information from other neurons in z for good
output o∗ = 𝑓 ∗

2
(z′, x). Such a process achieves our second goal

of reducing the dependence of output o on the activation of 𝑧

(Figure 3(l)).

However, neither of the two solutions can achieve the first goal

(i.e., training 𝑓1 to inhibit the activation of 𝑧 for a single feature).

To be more specific, method (a) wastes all the gradient for 𝑓1 in

generating 𝑧, preventing the related parameters from being updated.

Method (b) outputs V(𝑧′) = 𝑧 by compensating for the gap. As

the model obtains a good result with 𝑧, by calculating the gradient,

𝑓1 will be updated to push its output value from 𝑧 to 𝑧, expressed

as 𝑧 + 𝛿 (𝑧 − 𝑧), where 𝛿 > 0 up to the learning rate (Figure 3(i)).

Ironically, the actual output of 𝑧 is updated to 𝑧 +𝛿 (𝑧−𝑧), deviating
from 𝑧 by a factor of 1 + 𝛿 :

𝑧 + 𝛿 (𝑧 − 𝑧) − 𝑧

𝑧 − 𝑧
= 1 + 𝛿.

Therefore, these two simple solutions either contribute nothing to

the deactivation of 𝑧 or even enhance its activation (Figure 3(g,k)).

After delving deeper into the literature, it is possible that previ-

ous researchers also recognized the negative effects of monoseman-

ticity, but they may have discontinued their efforts after obtaining

bad results from implementing these naive solutions.

3.2.2 Reversed Deactivation. To address the aforementioned prob-

lems, we propose our method called Reversed Deactivation (RD for

short). Following the above-mentioned definitions, we replace the

original 𝑧 with 𝑧′ (Figure 3(f)):

𝑧′ = −𝑧 + (𝑧 + 𝑧)𝑛𝑔 . (12)

Similar to baselines, RD also ensures the second goal of decreasing

the dependence of output o on the activation of 𝑧. To be more

specific, 𝑓2 receives a value V(𝑧′) = V(−𝑧 + (𝑧 + 𝑧)𝑛𝑔) = 𝑧, which

provides little information and requires 𝑓2 to learn the information

from other neurons in z (Figure 3(h)).
Besides, RD can inhibit the activation level of 𝑧 when given x.

In short, after calculating the gradient, 𝑓1 will update the trainable

parameter to push its output value from 𝑧 to 𝑧 (Figure 3(i)). Different

from method (b), the gradient on 𝑧 is reversed. To achieve the same

shifted value 𝑧 + 𝛿 (𝑧 − 𝑧) mentioned above, an insight into the

update can be expressed as:

V(−𝑧 + (𝑧 + 𝑧)𝑛𝑔) = 𝑧 (13)

→ V(−(𝑧 − 𝛿 (𝑧 − 𝑧)) + (𝑧 + 𝑧)𝑛𝑔) = 𝑧 + 𝛿 (𝑧 − 𝑧) (14)

KDD ’24, August 25–29, 2024, Barcelona, Spain Jiachuan Wang, Shimin Di, Lei Chen, and Charles Wang Wai Ng

7

(a) A monosemantic neuron 𝑧 activates (orange) for the
inputs 𝐱 ∈“cat” and deactivates (blue) for the others.

(i) By calculating the
gradient, update 𝑓1 to
increase 𝑧′ can get a

better result.

(g) Naïve Deactivation (a)
discard all the gradient
and cannot update 𝑓1

1 7 3 3 3

(b) Optimize 𝑓1 for the 1st goal:
decrease the activation of 𝑧 when given 𝐱.

(c) Optimize 𝑓2 for the 2nd goal:
reduce the reliance of output 𝐨 on 𝑧.

7 1

(h) From the view of 𝑓2,
𝑧′ = 1 is useless.

𝑓2 has to be updated to
rely on other neurons.

1

Too small!
Increase 𝑧′!

Back-
propagation: 7 1 7 11 7 6

(l) Reverse Deactivation
decreases the neuron activation.

2 1 2 8 6
1 2

7 1

2

7 8

6 8

7 6

(d) Original network.

7 7𝑓1

𝑓2

𝐱 𝐨

𝑓2

𝑧 𝑧′

(k) Naïve Deactivation (b)
even further activate 𝑧

with the updated 𝑓1.

𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓1
∗ 𝑓2 𝑓2

∗

ҧ𝑧𝑧

7 11
𝑧 ҧ𝑧𝑛𝑔 ҧ𝑧

𝑧′

𝑓1 𝑓2

𝑧 + ҧ𝑧 − 𝑧 𝑛𝑔

7 17 6

ҧ𝑧

𝑧′

𝑓1 𝑓2 7 17 8
𝑧′

𝑧 −𝑧 + ҧ𝑧 + 𝑧 𝑛𝑔 ҧ𝑧

𝑓2
𝑓1

⋅ 𝑛𝑔

7
𝑧

1
ҧ𝑧

(e) Naïve Deactivation (a). (f) Naïve Deactivation (b). (g) Reverse Deactivation.

modify 𝑧 to 𝑧′

𝑧 𝑧∗

Figure 3: Illustration of problems and solutions to inhibit monosemanticity. (a) A monosemantic neuron 𝑧 only activates
(orange) for the feature “cat" with a high mean value (= 7). 𝑧 is deactivated (blue) for other inputs with a small mean value
(𝑧 = 1). (b) The first goal is to optimize the frontal model 𝑓1 so that 𝑧 is less activated given the input “cat". (c) The second goal
is to optimize the followed model 𝑓2 so that a correct output for “cat" does not solely rely on 𝑧. (d) Zoom in on the original
model at neuron 𝑧. (e) Naive solution that sets 𝑧′ to a constant 1 without gradient. (f) Naive solution that decreases the value of
𝑧 to 𝑧 with a constant 6 without gradient. (g) Reverse Deactivation that first reverses 𝑧 then pushes the output value to 𝑧 by
adding a constant 8 without gradient. (h) All the methods can achieve the second goal by outputting a valueV(𝑧′) = 𝑧 to 𝑓2. As 𝑧
provides little information, 𝑓2 must learn to rely on other neurons. (i) When calculating the gradient, 𝑓1 will find that 𝑧 is too
small and tends to increase it (e.g., from 1 to 2). (j) Naive method (a) cannot update related parameters without gradient. (k)
Naive method (b) further increases the underlying 𝑧 activation (7 to 8). (l) Reverse Deactivation inherently deactivates 𝑧 (from 7
to 6). When a new batch arrives, the updated 𝑧∗ activates less (=6) for “cat" compared with 𝑧.

The output of 𝑓1 without post deactivation (i.e., 𝑧−𝛿 (𝑧−𝑧)) is closer
to 𝑧 with a factor 1 − 𝛿 :

𝑧 − 𝛿 (𝑧 − 𝑧) − 𝑧

𝑧 − 𝑧
= 1 − 𝛿,

which achieves deactivation (Figure 3(j)). The formal and detailed

theory is presented in the following lemma.

Lemma 3.3. Given a trained model 𝑓 with a continuous second
derivative and a Lipschitz continuous gradient, where 𝑓 achieves
a desired output o with minimal loss L(o), in which o = 𝑓 (x) =

𝑓2 (𝑓1 (x), x) = 𝑓2 (z, x) for input x based on its monosemantic neuron 𝑧
in layer z, suppose that L(𝑓2 (·)) monotonically increases with |𝑧′−𝑧 |
for any other value 𝑧′ that replaces 𝑧. Then, with a sufficiently small
learning rate 𝑙 , by updating the model 𝑓 with gradient descent based
on the neuron processed by the RD method, the activation of 𝑧 on
input x can be inhibited.

The proof is given in Appendix D.2 in technical report [1].

Additionally, we conduct validation experiments to compare the

optimization outputs based on different methods in subsection 4.3.

The results are consistent with the theory and the analysis of naive

methods and RD, showing that RD is effective in inhibiting monose-

manticity.

3.3 Flexible Plug-in Module
In this subsection, we demonstrate the implementation of our

method, which can be inserted after any neuron layer to inhibit its

monosemanticity for emergence induction. We name our module

Monosemanticity-based Emergence Learning (MEmeL for short)

and outline the advantages of MEmeL:

• Adaptivity: Our module is compatible with any design of frame-

work, and no structural changes are needed after inserting it.

• Light weight: No additional trainable parameters are introduced.

The details of MEmeL are displayed in Figure 4. We present a

general framework of a neural network in Figure 4(a). The output

o is derived from x based on the layers of neurons {z}. Yellow
arrows indicate the reliance of neuron layers on each other. Our

method can be applied to any layer of neurons, such as z3
and z5

in

Figure 4(b), where the original neurons are adjusted by our modules

to inhibit monosemanticity.

Taking z5
as an example (Figure 4(c)), we first detect monoseman-

tic neurons using our MS metric, as introduced in subsection 3.1.

After identifying these neurons (colored red), we apply our Reverse

Deactivation method, as described in subsection 3.2, to each of

them.

Learning from Emergence: A Study on Proactively Inhibiting the Monosemantic Neurons of Artificial Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

𝐳𝟒

𝐳𝟑

𝐳𝟓

𝐳𝟔

𝐳𝟐

𝐳𝟏

𝐱

𝐨

𝐳𝟒

𝐳𝟑

𝐳𝟓 ′

𝐳𝟔

𝐳𝟐

𝐳𝟏

𝐱
𝐳𝟓

𝐳𝟑 ′

𝐨

(a) A demo framework of an artificial neuron network (b) Under the same network with (a), two layers of
neuron (𝐳3, 𝐳5) adjusted by our module MEmeL.

Neurons that are detected to be highly monosemantic Neurons that are detected to be less monosemantic

Update factors for metric
and analyze neurons

Monosemantic
Neuron Detection

Modify detected highly
monosemantic neurons

Monosemantic
Neuron Inhibition

Neurons in 𝐳𝟓 Monosemantic neurons to be modified Neurons has been modified to 𝐳𝟓 ′

(c) The functionality insight of MEmeL under 𝐳5 as an example

Figure 4: Overview of our method: (a) An arbitrary neural network framework. x represents the input and o represents the
output. zs represent hidden layers of neurons, and arrows indicate the dependency relationships. (b) Our module is inserted
after z3 and z5, requiring no changes to the framework. (c) Details of our module applied to z5. The input neurons are first
analyzed using our metric. Once monosemantic neurons are identified, they are inhibited using RD. The resulting processed
layer has the same shape as the input.

For adaptability, our module (i) does not require a specific input

format and (ii) outputs (z5)′ in the same shape as the input z5
,

ensuring format consistency during data propagation. Thus, no

adjustments to the framework are needed to apply our module.

For lightweightness, neither of our two methods introduces any

trainable parameters. Additionally, MEmeL focuses on presenting

the idea of functionality induction. The methods we propose do

not directly decrease monosemanticity during training, but instead

induce the model to do so, supported by theoretical analysis. Once

we have a well-trained model, the performance is expected to be ro-

bust even without induction. Therefore, during testing, the module

can be directly removed without incurring any inference overhead.

The results of the validation experiments also support our analysis

of removing MEmeL during testing. (see Appendix C.1).

The detailed algorithm is provided in the Appendix A.2. We also

apply two simple tricks for implementation: late start and variance

compensation, to avoid unstable value fluctuations during the cold

start.

Last but not least, we emphasize the proposition of the pipeline

for emergence-based learning. Researchers can focus on separable

directions: (1) improving the metric to better detect factors related

to scale change, and (2) designing factor-oriented solutions for

better performance.

4 Experiments
In this section, we first introduce the basic experimental setup in

subsection 4.1, then present the main empirical studies in subsec-

tion 4.2. We show a case study that the proposed Reverse Deactiva-

tion is more powerful in inhibition monosematicity than the naive

methods in subsection 4.3. Furthermore, we discuss the potentials

and limitations of MEmeL in subsection 4.4. Note the experiment

about the impact of removing MEmeL during test is provided in

Appendix C.1 due to the limited space.

4.1 Experimental Setup
4.1.1 Data Sets, Base Models, and Tasks. To validate the conjecture
of monosemantic neurons, our inhibition method, and correspond-

ing theories, we apply MEmel to milestone models such as Bert,

Transformer, and ConvRNN on various tasks (e.g., language, image,

and physics simulation), respectively.

• Language Task. We apply MEmeL to the BERT (Pre-training of

Deep Bidirectional Transformers) model [8] on the GLUE (Gen-

eral Language Understanding Evaluation) benchmark [37]. BERT

utilizes a transformer architecture and is pretrained on a large

corpus of text data. It excels at capturing context and generat-

ing high-quality representations of words and sentences. GLUE

serves as a benchmark for natural language understanding tasks,

encompassing various tasks such as natural language inference,

sentiment analysis, and similarity analysis.

• Image Task. We conduct experiments on the Swin-Transformer

model [20] and ImageNet dataset [7]. The Swin-Transformer is a

transformer model that uses a hierarchical structure and shift-

based windows to capture cross-window connections. Our ex-

periment follows their approach, which involves fine-tuning the

Swin-Transformer on ImageNet-1K using checkpoints pretrained

on ImageNet-22K. ImageNet-1K is a classification benchmark

with 1,000 classes, consisting of 1.28 million training images and

50,000 validation images.

KDD ’24, August 25–29, 2024, Barcelona, Spain Jiachuan Wang, Shimin Di, Lei Chen, and Charles Wang Wai Ng

Table 1: Results on GLUE Test datasets. We follow the setting of BERT to demonstrate results on 8 datasets and calculate the
average score. The scores are F1 scores for QQP and MRPC, Spearman correlations for STS-B, and accuracy scores for the other
tasks. All metrics are the larger the better with best results in bold font.

Model MNLI-(M/MM) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

Original 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6

Naive (a) 84.3/83.6 71.7 90.6 93.8 52.1 85.8 88.2 66.4 79.6

Naive (b) 84.7/84.1 71.6 90.6 93.6 51.8 86.5 87.2 68.0 79.8

MEmeL 84.8/83.9 71.7 90.9 93.6 54.5 86.6 87.6 68.2 80.2

MEmeL-Tune 84.8/83.9 71.7 91.2 93.7 55.7 86.6 89.0 68.2 80.5

Table 2: Results on ImageNet-1k dataset, where 3 sizes of
Swin-Transformer pretrained on ImageNet-22k are used as
backbones. The metric used is top-1 accuracy, where a higher
value indicates better performance. The best results are indi-
cated in bold font.

Model Swin-T Swin-S Swin-B
Size 28M 50M 88M

Original 80.9 83.2 85.1

Naive (a) 81.0 83.4 84.6

Naive (b) 81.0 83.4 85.1

MEmeL 81.1 83.4 85.1

MEmeL-Tune 81.1 83.5 85.2

Table 3: Results on HKO-7 dataset. We initially trained a
ConvGRU model for 20k steps to create the base model. The
metrics used are B-MSE and B-MAE, where a smaller value
indicates better performance. The best results are in bold
fonts. We repeated each experiment three times and reported
the average scores.

Model B-MAE B-MSE

Original 1003.41 309.96

Naive (a) 1003.56 309.83

Naive (b) 1003.40 310.13

MEmeL 1003.25 309.94

MEmeL-Tune 998.81 298.16

• Physics Simulation Task. We apply our MEmeL to the ConvGRU

model on the HKO-7 dataset [28], which forecasts precipitation

based on images of radar echoes [27]. ConvGRU is a lightweight

module that belongs to the ConvRNN class, a milestone struc-

ture that combines CNN and RNN to capture spatiotemporal

correlations simultaneously. HKO is a large-scale benchmark

dataset from the Hong Kong Observatory (HKO), providing high-

resolution radar images spanning multiple years. Generally, pre-

cipitation forecasting is a challenging task, for both theory-driven

and data-driven approaches, as it exhibits complex chaotic dy-

namics [38, 40].

The configuration of above base models generally follow their

original settings (see more details in Appendix E.1 in technical re-

port [1]). The metrics can be found in Appendix A.1. We emphasize

that our method is a general module applicable to models of any

scale. After applying our module, the effectiveness of MEmeL can

be evaluated by comparing it with the original model.

4.1.2 Hyper-parameter Setting. At the beginning of the experiment

design, we tend to focus on the performance improvement brought

by introducing reverse deactivation into milestone models. To fairly

validate the influence of the proposed MEmeL with other deactiva-

tion approaches (Naive (a) and (b)), we deactivate the neuron with

only top-1 MS in each batch (recorded as MEmeL vs. Naive(a)
and (b)). During further discussion, people raised interest about

the potential of tuning and we also display the results with tuned

hyper-parameters (recorded as MEmeL − Tune). See more details

in Appendix E.3 in the technical report [1].

4.1.3 Implementation. Our experiment is conducted on 4 V100

GPU cards. All the codes are implemented in PyTorch [2], which

are given in the link https://github.com/dominatorX/MEmeL-code.

4.2 Main Experiment Result
Table 1, Table 2, and Table 3 demonstrate the performance ofMEmeL

incorporated with BERT, Swin-Transformer, and ConvGRU, respec-

tively. The “Original” method denotes the raw model, “Naive (a)”

and “Naive (b)” are corresponding to the original model incorpo-

rated with naive inhibition methods (see details in Equation (10)).

By comparing the original method and the method enhanced with

MEmeL, we can see that the MEmeL (especially MEmeL-Tune)

achieves better or comparable results on different tasks, different

data sets, and different base models. We also conduct the paired

t-test on all three datasets to verify that the improvements are sta-

tistically significant (see Appendix C.2). This validates that neural

networks can achieve better results by deactivating monosemantic

neurons. By comparing Naive (a), (b) with MEmeL (and MEmeL-

Tune), we can easily observe that naive deactivation methods may

intensify the monosemanticity of neural networks, which may

lead to inferior performance improvement as discussed in subsec-

tion 3.2.1.

4.3 The Effectiveness of Inhibition
To validate that the monosemanticity is indeed inhibited by our re-

verse deactivation, we conducted experiments on the ImageNet-1k

dataset using the Swin-Transformer model as shown in Table 4. We

https://github.com/dominatorX/MEmeL-code

Learning from Emergence: A Study on Proactively Inhibiting the Monosemantic Neurons of Artificial Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 4: Validation experiments conducted on the Swin-B model. We record the Decrease Ratios and Update Scales of 10k
neurons. The model that utilizes our Reverse Deactivation method is compared with those using two Naive methods and the
original Swin-B.

Methods Original Naive (a) Naive (b) Reverse Deactivation

Average Decrease Ratio 0.003% -0.017% -0.044% 0.013%
Average Total Update Ratio 0.052% 0.118% 0.161% 0.189%

collected 10k samples for 4 different settings, where the modifica-

tion of 𝑧 was done using Original (no modification), and two naive

methods (a) and (b), and Reverse Deactivation in subsection 3.2.2.

We feed inputs x to the model again to check how 𝑧 is optimized

after updating the model with x. The new value is denoted as 𝑧′.
Then, the Decrease Ratio represents how the monosemanticity is

decreased upon 𝑧: Decrease Ratio = (1 − 𝜙 (𝑧′)/𝜙 (𝑧)) × 100%. With-

out any modification, monosemanticity showed a slight decrease

with a small positive average decrease ratio (0.003%) in the original

model. Naive methods (a) and (b) intensify monosemanticity since

their decrease ratios are negative, which is consistent with our

analysis in Sec. 3.2.1. On the contrary, reverse deactivation has the

most significant impact on decreasing monosemanticity (0.013%).

But the value is relatively small. That is mainly because the small

learning rate (2 × 10
−6
) usually leads to a small update step in

training. To provide a clear illustration, we further define the Total

Update Ratio as Total Update Ratio = |𝑧′/𝑧 − 1| × 100%. The scale

of modification on 𝑧 and on 𝜙 (·) is compatible (e.g., 0.013% versus

0.189% for RD). Thus, the small scale of the Decrease Ratio is due to

the small learning rate, indicating a stable impact on the inhibition

of monosemanticity using our method.

4.4 Potential and Limitation of MEmeL
According to our hypothesis, MEmeL induces the model to accumu-

late general and abstract functionality instead of monosemanticity

for a specific task, which is consistent with the goal of per-taining.

Although MEmeL achieves good results during fine-tuning (demon-

strated at Main Experiments in subsection 4.2), the improvement is

expected to be even greater when it is applied to the pre-training

phase.

The main obstacle is the high computational resource cost re-

quired for pre-taining. Currently, we have only completed valida-

tion on relatively small precipitation forecasting datasets. In Table 5,

the model pre-trained with MEmeL (P-MEmeL) outperforms the

one without it (P-Original). Based on these two models, the same

finetuning process is conducted without MEmeL. Using MEmeL

during pretraining improves B-MAE by 0.18% and B-MSE by 1.29%

(T-MEmeL). In contrast, using MEmeL during finetuning improves

B-MAE by 0.02% B-MSE by 0.01% (MEmeL in Table 2). The results

validate our hypothesis.

5 Conclusion
Different from the literature, we hypothesize a key factor that highly

promote the performance of large neural networks: the reduction of

monosemantic neurons. There is no unified quantitative evaluation

metric and simply banning monosemantic neurons does not pro-

mote polysemanticity in neural networks. Therefore, we propose

Table 5: Validation experiments conducted on the HKO-7
dataset. In addition, we pretrain a ConvGRU model for 20k
steps using MEmeL, labeled as “P-MEmeL”. The “P-Original”
model is pretrained based on the originalmodel and is used in
themain experiment. Based on these twomodels, we perform
finetuning for 2k steps using the original model, labeled as
“T-MEmeL” and “T-Original”, respectively. The metrics used
for evaluationwere B-MSE andB-MAE,where a smaller value
indicates better performance. The best results are shown in
bold fonts.

Model B-MAE B-MSE

P-Original 1004.25 311.54

P-MEmeL 1000.98 306.67

T-Original 1003.41 309.96

T-MEmeL 1001.56 305.96

to learn from emergence and present a study on proactively inhibit-

ing the monosemantic neurons in this paper. More specifically, we

first propose a new metric to measure the monosemanticity of neu-

rons with the guarantee of efficiency for online computation, then

introduce a theoretically supported method to suppress monose-

mantic neurons and proactively promote the ratios of polysemantic

neurons in training neural networks. We validate our conjecture

that monosemanticity brings about performance change at differ-

ent model scales on a variety of neural networks and benchmark

datasets in different areas, including language, image, and physics

simulation tasks. Further experiments validate our analysis and

theory regarding the inhibition of monosemanticity.

Unfortunately, extending this research to very large data sets or

models (e.g., large language models) is appealing yet impossible for

research departments due to limited resources. Therefore, we are

trying to find ways to extend this paper to extremely large models

trained on large data sets as future work.

Acknowledgments
Lei Chen’s work is partially supported by National Key Research

and Development Program of China Grant No. 2023YFF0725100,

National Science Foundation of China (NSFC) under Grant No.

U22B2060, the Hong Kong RGC GRF Project 16213620, RIF Project

R6020-19, AOE Project AoE/E-603/18, Theme-based project TRS

T41-603/20R, CRF Project C2004-21G, Guangdong Province Science

and Technology Plan Project 2023A0505030011, Hong Kong ITC ITF

grants MHX/078/21 and PRP/004/22FX, Zhujiang scholar program

2021JC02X170, Microsoft Research Asia Collaborative Research

Grant and HKUST-Webank joint research lab grants.

KDD ’24, August 25–29, 2024, Barcelona, Spain Jiachuan Wang, Shimin Di, Lei Chen, and Charles Wang Wai Ng

References
[1] 2024. Technical report of our paper. https://github.com/dominatorX/MEmeL-

code/blob/main/EmeL_tech_report.pdf

[2] Paszke Adam, Gross Sam, Chintala Soumith, Chanan Gregory, Yang Edward,

DeVito Zachary, Lin Zeming, Desmaison Alban, Antiga Luca, and Lerer Adam.

2017. Automatic differentiation in PyTorch. (2017).

[3] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Àgata Lapedriza, Bolei Zhou, and

Antonio Torralba. 2020. Understanding the role of individual units in a deep

neural network. Proc. Natl. Acad. Sci. USA 117, 48 (2020), 30071–30078.

[4] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley,

Kyle O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit,

USVSN Sai Prashanth, Edward Raff, et al. 2023. Pythia: A suite for analyzing

large language models across training and scaling. In International Conference on
Machine Learning. PMLR, 2397–2430.

[5] Olah Chris, Cammarata Nick, Schubert Ludwig, Goh Gabriel, Petrov Michael,

and Carter Shan. 2020. Zoom in: An introduction to circuits. Distill 5, 3 (2020),
e00024–001.

[6] Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. 2023. Analyzing Trans-

formers in Embedding Space. In ACL (1). Association for Computational Linguis-

tics, 16124–16170.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-

ageNet: A large-scale hierarchical image database. In CVPR. IEEE Computer

Society, 248–255.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

NAACL-HLT (1). Association for Computational Linguistics, 4171–4186.

[9] Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan,

Scott Johnston, Sheer El Showk, Nicholas Joseph, Nova DasSarma, Ben Mann,

Danny Hernandez, Amanda Askell, Kamal Ndousse, Andy Jones, Dawn Drain,

Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt, Zac Hatfield-Dodds, Jackson

Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath, Josh Ja-

cobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, SamMcCandlish,

Dario Amodei, and Christopher Olah. 2022. Softmax Linear Units. Transformer
Circuits Thread (2022).

[10] Luciano Floridi and Massimo Chiriatti. 2020. GPT-3: Its Nature, Scope, Limits,

and Consequences. Minds Mach. 30, 4 (2020), 681–694.
[11] Goh Gabriel, Cammarata Nick, Voss Chelsea, Carter Shan, Petrov Michael, Schu-

bert Ludwig, Radford Alec, and Olah Chris. 2021. Multimodal neurons in artificial

neural networks. Distill 6, 3 (2021), e30.
[12] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer

Feed-Forward Layers Are Key-Value Memories. In EMNLP (1). Association for

Computational Linguistics, 5484–5495.

[13] Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii,

and Dimitris Bertsimas. 2023. Finding Neurons in a Haystack: Case Studies with

Sparse Probing. CoRR abs/2305.01610 (2023).

[14] Simon Haykin. 1994. Neural networks: a comprehensive foundation. Prentice Hall
PTR.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In CVPR. IEEE Computer Society, 770–778.

[16] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,

Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.

Scaling Laws for Neural Language Models. CoRR abs/2001.08361 (2020).

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-

fication with Deep Convolutional Neural Networks. In NIPS. 1106–1114.
[18] Anders Krogh. 2008. What are artificial neural networks? Nature biotechnology

26, 2 (2008), 195–197.

[19] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.

Howard, Wayne E. Hubbard, and Lawrence D. Jackel. 1989. Backpropagation

Applied to Handwritten Zip Code Recognition. Neural Comput. 1, 4 (1989),

541–551.

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,

and Baining Guo. 2021. Swin Transformer: Hierarchical Vision Transformer

using Shifted Windows. In ICCV. IEEE, 9992–10002.
[21] Wolchover Natalie. 2018. New theory cracks open the black box of deep learning.

(2018).

[22] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).

[23] Tilman Räuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. 2022.

Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep

Neural Networks. CoRR abs/2207.13243 (2022).

[24] McCulloch Warren S and Pitts Walter. 1943. A logical calculus of the ideas

immanent in nervous activity. The bulletin of mathematical biophysics 5 (1943),

115–133.

[25] AndrewM. Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky,

Brendan D. Tracey, and David D. Cox. 2018. On the Information Bottleneck

Theory of Deep Learning. In ICLR (Poster). OpenReview.net.
[26] Rylan Schaeffer, BrandoMiranda, and Sanmi Koyejo. 2023. Are Emergent Abilities

of Large Language Models a Mirage? CoRR abs/2304.15004 (2023).

[27] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and

Wang-chun Woo. 2015. Convolutional LSTM Network: A Machine Learning

Approach for Precipitation Nowcasting. In NIPS. 802–810.
[28] Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-Kin

Wong, and Wang-chun Woo. 2017. Deep Learning for Precipitation Nowcasting:

A Benchmark and A New Model. In NIPS. 5617–5627.
[29] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. In ICLR.
[30] Bills Steven, Cammarata Nick, Mossing Dan, Tillman Henk, Gao Leo, Goh Gabriel,

Sutskever Ilya, Leike Jan, Wu Jeff, and Saunders William. 2023. Language models

can explain neurons in language models. URL https://openaipublic. blob. core. win-
dows. net/neuron-explainer/paper/index. html.(Date accessed: 14.05. 2023) (2023).

[31] Bills Steven, Cammarata Nick, Mossing Dan, Tillman Henk, Gao Leo, Goh Gabriel,

Sutskever Ilya, Leike Jan, Wu Jeff, and Saunders William. 2023. Language models

can explain neurons in language models. URL https://openaipublic. blob. core. win-
dows. net/neuron-explainer/paper/index. html.(Date accessed: 14.05. 2023) (2023).

[32] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. 2015. Going deeper with convolutions. In CVPR. IEEE Computer Society,

1–9.

[33] Naftali Tishby and Noga Zaslavsky. 2015. Deep learning and the information

bottleneck principle. In ITW. IEEE, 1–5.

[34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucu-

rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia

Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,

Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel

Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut

Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,

Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,

Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,

Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross

Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,

Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Ro-

driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:

Open Foundation and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023).

[35] Bricken Trenton, Templeton Adly, Batson Joshua, Chen Brian, Jermyn Adam,

Conerly Tom, Turner Nick, Anil Cem, Denison Carson, Askell Amanda, et al. 2023.

Towards Monosemanticity: Decomposing Language Models With Dictionary

Learning. Transformer Circuits Thread (2023).

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In NIPS. 5998–6008.
[37] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R.

Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for

Natural Language Understanding. In ICLR (Poster). OpenReview.net.
[38] Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S. Yu.

2017. PredRNN: Recurrent Neural Networks for Predictive Learning using Spa-

tiotemporal LSTMs. In NIPS. 879–888.
[39] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian

Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.

Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William

Fedus. 2022. Emergent Abilities of Large Language Models. Trans. Mach. Learn.
Res. 2022 (2022).

[40] Zhang Xuebin, Zwiers Francis W, Li Guilong, Wan Hui, and Cannon Alex J. 2017.

Complexity in estimating past and future extreme short-duration rainfall. Nature
Geoscience 10, 4 (2017), 255–259.

[41] LeCun Yann, Bengio Yoshua, et al. 1995. Convolutional networks for images,

speech, and time series. The handbook of brain theory and neural networks 3361,
10 (1995), 1995.

[42] Yuxiang Zhou, Jiazheng Li, Yanzheng Xiang, Hanqi Yan, Lin Gui, and Yulan He.

2023. The Mystery and Fascination of LLMs: A Comprehensive Survey on the

Interpretation and Analysis of Emergent Abilities. CoRR abs/2311.00237 (2023).

https://github.com/dominatorX/MEmeL-code/blob/main/EmeL_tech_report.pdf
https://github.com/dominatorX/MEmeL-code/blob/main/EmeL_tech_report.pdf

Learning from Emergence: A Study on Proactively Inhibiting the Monosemantic Neurons of Artificial Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

Algorithm 1Monosementicity Scale Computing with Needed Vari-

ables

Input: new batch of values

{
z[𝑚+1] , z[𝑚+2] , · · · , z[𝑚+𝑏]

}
of the

neuron.

Local Variables: forget step 𝑛𝑓 , current step 𝑐𝑡 , current sample

mean 𝜇𝑚 and variance 𝜐𝑚

Calculate the MS for each input value 𝑧 ∈ z: 𝜙 (𝑧 [𝑚+𝑖]) =

(𝑧 [𝑚+𝑖] − 𝜇𝑚)2/𝜐𝑚 for 𝑖 ∈ [1, 𝑏].
Calculate 𝜇′

𝑏
= 1

𝑏

∑𝑏
𝑖=1

𝑧 [𝑚+𝑖]
and 𝜐′

𝑏
= 1

𝑏

∑𝑏
𝑖=1

(𝑧 [𝑚+𝑖] − 𝜇′
𝑏
)2
.

if 𝑐𝑡 < 𝑛𝑓 then

𝜇𝑚+𝑏 =
𝑚𝜇𝑚+𝑏𝜇′

𝑏

𝑚+𝑏 , 𝜐𝑚+𝑏 =
𝑚𝑏 (𝜇𝑚−𝜇′

𝑏
)2

(𝑚+𝑏−1) (𝑚+𝑏) +
𝑏𝜐′

𝑏
+(𝑚−1)𝜐𝑚
𝑚+𝑏−1

else
𝜇𝑚+𝑏 =

𝑛𝑓 𝜇𝑚+𝜇′
𝑏

𝑛𝑓 +1
, 𝜐𝑚+𝑏 =

𝑛𝑓 (𝜇𝑚−𝜇′
𝑏
)2

(𝑛𝑓 +1−1/𝑏) (𝑛𝑓 +1) +
𝜐′
𝑏
+(𝑛𝑓 −1/𝑏)𝜐𝑚
𝑛𝑓 +1−1/𝑏

end if
RETURN:Monosementicity Scale of inputs 𝜙 (z)

Algorithm 2Monosementicity-based Emergence Learning

Input: Values of 𝑛 neurons with batchsize 𝑏: z = {{𝑧 [𝑗]
𝑖

}𝑏
𝑗=1

}𝑛
𝑖=1

.

Local Variables: late start step 𝑙𝑠 , current step 𝑐𝑡 , current sample

mean {𝜇𝑖𝑚}𝑛
𝑖=1

and variance {𝜐𝑖𝑚}𝑛
𝑖=1

if 𝑐𝑡 < 𝑙𝑠 then
Calculate the MS for each input value

𝜙 (𝑧 [𝑚+𝑗]
𝑖

) =
(𝑧 [𝑚+𝑗]
𝑖

− 𝜇𝑖𝑚)2

𝜐𝑖𝑚 + 𝜖
∑𝑛
𝑘=1

𝜐𝑘𝑚/𝑛 for 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑏] .

Select values with high 𝜙 , adjust each of them according to

MD. Replacing the original ones in z to form output z′.
else

z′ = z
end if
Update sample mean {𝜇𝑖𝑚}𝑛

𝑖=1
and variance {𝜐𝑖𝑚}𝑛

𝑖=1
using Al-

gorithm 1.

RETURN: Adjusted layer of neurons z′

A Implementation Details
A.1 Implementation Details of MS 𝜙
During training, the model is continuously updated. However, sam-

ples from the early stages become outdated, and more importance

should be given to the new samples. To address this, we introduce

a forget step (𝑛𝑓) and keep track of the current training steps (𝑐𝑡).

Once 𝑐𝑡 ≥ 𝑛𝑓 , we update the sample mean and variance by re-

placing the number of samples from𝑚 to 𝑏 · 𝑛𝑓 . This reduces the
influence of previous samples. Both variable updating and mean

and variance computation have a complexity of 𝑂 (1).

A.2 Implementation Details of MEmeL
As described in Algorithm 1, the statistical variables are calculated

online. However, due to the limited number of samples at the begin-

ning of training, the estimation can be unstable. Additionally, if the

estimation of 𝑆2
is extremely small, it may cause overflow during

calculation. To improve the robustness of training, we introduce a

late start step 𝑙𝑠 and a variance compensation in the denominator of

the metric calculation in Equation (7). As outlined in Algorithm 2,

when a batch of data arrives, we only update neurons with RD if

the current step is greater than 𝑙𝑠 . The calculation of MS is also

adjusted by incorporating the mean of variances of other neurons,

weighted by a small value 𝜖 to prevent overflow.

B Related Works
B.1 Artificial Neural Networks and the

Increasing Scale
Since S andWalter [24] first modeled a simple neural network, ANN

has been investigated under a scale of several layers in the last cen-

tury [19, 41]. With improvements in hardware, deeper models can

be supported. AlexNet, which uses 8 layers for image classification,

achieved excellent performance in the 2012 ImageNet challenge

[17]. Later on, deeper models such as Inception and VGG increased

the scale to tens and hundreds of layers [29, 32]. The design of crit-

ical modules, such as ResNet, also plays a crucial role in ensuring

the stability of model training when increasing the depth [15].

After the Transformer was proposed and validated as effective

in various areas [36], both its scale and performance have seen sig-

nificant growth over the years [8, 20]. In recent years, architectures

based on the Transformer have achieved great success at extremely

large scales [10, 34]. Investigating the underlying effective proper-

ties created by the increase in scale is a highly demanded research

direction.

B.2 Mechanistic Interpretability
With the improved performance of neural networks, their black-

box nature raises more questions than it answers. To gain a better

understanding of and diagnose neural networks, researchers seek

mechanistic interpretability [23]. They study individual compo-

nents to understand their functionality and usage, such as neurons

for identifying dogs and cars [5]. As Transformer models demon-

strate their superiority in various domains, there is an increasing

focus on their interpretability. Geva et al. [12] propose that the feed-

forward layers of Transformers function as key-value pairs. Dar

et al. [6] extend this mapping to the embedding space. Although

the complexity greatly increases with larger models, the success of

these models attracts researchers who strive to find interpretability

in the vast sea of neurons [13, 31, 35]. In their work, Elhage et al. [9]

introduce the softmax linear unit to create monosemantic models.

Additionally, Gurnee et al. [13] modify the sparse probe by using

multiple heads to classify neurons with decreasing monosemantic-

ity. Trenton et al. [35] construct more powerful and complex probes

to construct mappings between neurons and features. While the

desire to decompose and understand everything is appealing (e.g.,

achieving monosententicity), it may conflict with the progress of

intelligence.

B.3 Information Bottleneck
As an important method to explain the deep learning mechanism,

the Information bottleneck (IB) provides a compression view for

deep learning and emphasizes forgetting together with information

retaining [33]. In contrast, we emphasize the way neurons manip-
ulate the retained information (distributed or one-to-one), while IB

KDD ’24, August 25–29, 2024, Barcelona, Spain Jiachuan Wang, Shimin Di, Lei Chen, and Charles Wang Wai Ng

Table 6: Validation results on GLUE Test datasets. The settings are the same with Table 1. All metrics are the larger the better
with best results in bold font.

Model MNLI-(M/MM) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

MEmeL 84.8/83.9 71.7 90.9 93.6 54.5 86.6 87.6 68.2 80.2
MEmeL-T 84.9/83.7 71.5 90.5 93.9 52.1 85.9 88.7 68.1 79.9

Table 9: The paired t-test on all 3 datasets. “Mean-Original”
and ‘Mean-Ours” refers to the mean scores of the two meth-
ods on each dataset. t-statistic>0 for GLUE and ImageNet as
their metrics are the larger the better. t-statistic<0 for HKO-7
as its metric is the smaller the better.

Dataset GLUE ImageNet HKO-7

p-value 0.02 0.07 0.06

t-statistic 2.77 3.46 -2.38

Mean-Original 79.6 83.1 656.69

Mean-Ours 80.5 83.3 648.49

Table 7: Validation results on ImageNet-1k dataset. See Ta-
ble 2 for detailed settings. The metric is the higher the better.
The best results are indicated in bold font.

Model Swin-T Swin-S Swin-B

Size 28M 50M 88M

MEmeL 81.1 83.4 85.1
MEmeL-T 81.1 83.5 85.1

Table 8: Results on HKO-7 dataset. The settings are the same
with Table 3. The metrics are the smaller the better with the
best results in bold fonts.

Model B-MAE B-MSE

MEmeL 1003.25 309.94

MEmeL-T 1002.46 309.52

emphasizes the total amount of information that different layers

of neurons record at different training stages [25].

As the scale of neural networks continues to grow, effective infor-

mation processing and reasoning have become as important a need

as information compression. In addition to what information should

be squeezed through the bottleneck, how to process the squeezed

information is also important and is what our paper concerns [21].

Our method is a promising direction to enrich deep learning under-

standing together with IB, especially when large model application

requires more and more powerful reasoning ability.

B.4 Debate on the Existence of Emergence
Note that Schaeffer et al. [26] states that “emergent abilities ap-

pear due to the researcher’s choice of metric rather than due to

fundamental changes in models with scale”. Here we point out that

their finding does not diminish the value of our finding, but instead

partially coincides with our idea:

• Though evaluation metrics can be smooth and well-designed,

models are improved based on training data. However, solving

hard and realistic problems via advanced AI involves more and

more data with poorly labeled or even without labels. Emergence

learning is demanded to find and boost the underlying ability

accumulation of models, which diminishes the correctness of indi-

vidual answers and focuses on the potential knowledge learning

brought by scale changes.

• To observe the accumulated ability of the model on these hard

problems, we need smooth and mild metrics. Such metrics may

not be available for challenging problems in the future, where the

research would be like roaming at deep night. Factors discovered

through Emergence Learning can help validate the potential

improvement of models and enlighten the darkness.

C More Experiments
C.1 The Impact of Removing MEmeL During

Test
Recall that in subsection 3.3, we emphasize the lightness of our

MEmeL. It aims to inducemodels to reducemonosemanticity during

training and can be removed during testing. Here, we conduct

experiments to enable MEmeL during testing, which are expected

to have similar results compared to the results displayed in the

main experiments (see Section 4.2). These models are labeled with

the postfix “-T" (e.g., MEmeL-T for MEmeL as the base model) while

keeping other experimental settings unchanged.

The results are displayed in Table 6, Table 7, and Table 8 for

GLUE, ImageNet, and HKO-7 datasets, respectively. The best re-

sults are shown in bold fonts. The performance differences for the

two settings are very close on all three tasks, indicating a stable

performance when tested without the induction of MEmeL. Inter-

estingly, on GLUE datasets, the performance when using MEmeL

during testing is much more fluctuated. It would be valuable to

study the dynamics of MEmeL in more depth as future work.

C.2 Statistical Significance
To statistically verify the improvement from our method, we con-

duct the paired t-test on all three datasets. The results are given

in Table. 9. Each score is obtained from the results of the Origi-
nal and MEmeL-Tune. All the datasets show a 90% confidence

level (p-value <0.1) supporting the hypothesis that our performance

significantly differs from the baseline.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Activation and Monosemantic
	2.2 Monosemanticity Inhibition

	3 Methods
	3.1 Metric for Monosemanticity
	3.2 Inhibition of Monosemanticity
	3.3 Flexible Plug-in Module

	4 Experiments
	4.1 Experimental Setup
	4.2 Main Experiment Result
	4.3 The Effectiveness of Inhibition
	4.4 Potential and Limitation of MEmeL

	5 Conclusion
	Acknowledgments
	References
	A Implementation Details
	A.1 Implementation Details of MS
	A.2 Implementation Details of MEmeL

	B Related Works
	B.1 Artificial Neural Networks and the Increasing Scale
	B.2 Mechanistic Interpretability
	B.3 Information Bottleneck
	B.4 Debate on the Existence of Emergence

	C More Experiments
	C.1 The Impact of Removing MEmeL During Test
	C.2 Statistical Significance

