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—— Is Inhibiting monosemanticity a new research direction toward better performance?
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Background

Artificial Neural Networks

1943, Artificial Neuron 2012, AlexNet

A large increase in scale!

2015, ResNet
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Background

Outstanding of Large Language Models (LLM) – Emergence

 Emergence: just increase the scale, abilities will emerge!

Refer to: Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance
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Background

Outstanding of Large Language Models (LLM) – Emergence

 Emergence:
the scale not reach a certain threshold gradual improvement

Wei, Jason, et al. "Emergent abilities of large language models." TMLR 2022.
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Background

Outstanding of Large Language Models (LLM) – Emergence

 Emergence:
the scale not reach a certain threshold gradual improvement

the scale surpasses a certain threshold rapid enhancement

Wei, Jason, et al. "Emergent abilities of large language models." TMLR 2022.
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Background

Outstanding of Large Language Models (LLM) – Emergence

 Emergence:
the scale not reach a certain threshold gradual improvement

the scale surpasses a certain threshold rapid enhancement

Wei, Jason, et al. "Emergent abilities of large language models." TMLR 2022.

One interesting question:

People increase the model scale and get better results, 
but what has changed underlying the process? 
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Motivation

Interpreting Emergence

 Pioneer works interpret the performance of small and large-scale
models from the correlation between neurons and input features.

inputs outputs

Monosemantic Neuron
One vs. One

410M.L20.N4003 pre-activation
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1 specific feature (French)
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Motivation

Interpreting Emergence

 Pioneer works interpret the performance of small and large-scale
models from the correlation between neurons and input features.

inputs outputs

Monosemantic Neuron
One vs. One

410M. L3.N333 pre-activation
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different features

inputs outputs

Polysemantic Neuron
N vs. One
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Motivation

Motivational Experiments

 Larger models have lower monosemanticity!

 Turning off monosemantic neurons, a larger model has smaller error increase.
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Larger model, 
smaller influence.

smaller-size (70M) middle-size (1B) larger-size (6.9B) 
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Motivation

Motivational Experiments

 Larger models have lower monosemanticity!

 Given the corresponding/non-corresponding features, the difference in

activation values of large models is smaller than that of small models

Finding Neurons in a Haystack: Case Studies with Sparse Probing, Trans. Mach. Learn. Res. 2023 (2023)

Pythia-70M

Pythia-6.9B

Large difference 
between the 
corresponding and 
non-corresponding 
features

Small difference
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Motivation

Motivational Experiments

 Larger models have lower monosemanticity!

 Turning off monosemantic neurons, a larger model has smaller error increase.

 Given the corresponding/non-corresponding features, the difference in

activation values of large models is smaller than that of small models

 Assumption

 The decrease in monosemanticity may be a key factor

in achieving higher performance as the model scale increases.

Finding Neurons in a Haystack: Case Studies with Sparse Probing, Trans. Mach. Learn. Res. 2023 (2023)
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Motivation

376 × 53 = 19928
376 × 53 = 19928
376 × 53 = 19928
376 × 53 = 19928
376 × 53 = 19928

memorize repeatedly
train repeatedly

376 × 53 = 19928

376 × 53 =?

A student memorizes questions and
answers for short-term gain.
As the amount of learning increases,
understand the problem inefficiently.

Train ANNs with the observed training
examples repeatedly.
As the amount of training increases, slowly
reduce the monosemantic neurons.

Motivational Examples

 Assumption: The decrease in monosemanticity may be a key factor in achieving 
higher performance as the model scale increases.
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Motivation

376 × 53 = 19928

376 × 53 =?

Motivational Examples

 Assumption: The decrease in monosemanticity may be a key factor in achieving 
higher performance as the model scale increases.

The student is expected to dismantle the
problem and integrate the knowledge
points, and achieve the final answer via
reasoning.

The large model disassembles the training
inputs, maps the features of samples to
multiple neurons, integrates the neurons,
and the output “emerges”!
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Motivational Experiments from Literature

 We rather conclude the current paradigm of training neural

networks as a passive process in decreasing monosemantic neurons.

 Inspired by the emergence, we propose one question:

Motivation

Can we proactively inhibit monosemantic neurons
in artificial neural networks to achieve high performance?

Heuristic
Learning

Understanding and 
Reasoning

N to One
One to N

Polysemantic Neurons

Distributed Features

Rote Learning
One (question) to 

One (answer)
One (feature) to 

One (neuron)
Monosemantic

Neurons
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Motivation

Technical Challenges: Monosemantic Neuron Detection

 Existing detection has limitations and high computational overhead
 Limitation: require to calculate on manually designed and labeled feature

data sets.
 High Computational Overhead: Probes require training. And the calculation

requires to frequently count the inputs to neurons and activation values from
all neurons.

 Strictly defining monosemantic neurons is still under discussion in
quantitative analysis.
 Generality: Detection does not dependent on a specific data set.
 Efficiency: Detect monosemantic neurons during online training.

Expected
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Motivation

Technical Challenges: Monosemantic Neuron Inhibition

 Simply prohibiting the activation of monosemantic neurons will

intensify the monosemanticity of artificial neural networks.

correct prediction wrong prediction enhance the monosemanticity
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Motivation

Summary of Technical Contributions

We propose to learn from emergence to present a study on proactively

inhibiting the monosemantic neurons of artificial neural networks.

 The Evaluation Metric for Detecting Monosemantic Neurons

 Data-specific evaluation → A quantitative metric does not rely on data sets.

 Large computational overhead → Online computation guarantee.

 The Proactive Deactivation Method to Reduce Monosemantic Neurons

 Hard to deactivate → A theoretically supported method to suppress

monosemantic neurons
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Method: Detection

Evaluation Measurement of Monosemantic Neurons 

 Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic

neurons from low frequency of activation and high deviation of

activation value.

 Low frequency: Existing work has divided hundreds of features, and the one-

to-one nature determines that their activations are sparse.

Pythia-70M

Finding Neurons in a Haystack: Case Studies with Sparse Probing, Trans. Mach. Learn. Res. 2023 (2023)



26

Method: Detection

Evaluation Measurement of Monosemantic Neurons 

 Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic

neurons from low frequency of activation and high deviation of

activation value.

 High deviation: The distribution after corresponding feature input greatly

deviates from the overall distribution.

Pythia-70M

Finding Neurons in a Haystack: Case Studies with Sparse Probing, Trans. Mach. Learn. Res. 2023 (2023)
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Method: Detection

Evaluation Measurement of Monosemantic Neurons 

 Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic

neurons from low frequency of activation and high deviation of

activation value.

 But what is activation in our scenario? (Another issue)

i

𝑖-th neuron 
at ℓ-th layer: an example of dropout

Activation is a concept
across different data
instances since we need
to evaluate it on different
inputs, features, neurons.
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Method: Detection

Evaluation Measurement of Monosemantic Neurons 

 Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic

neurons from low frequency of activation and high deviation of

activation value.

 But what is activation in our scenario? (Another issue)

i

𝑖-th neuron 
at ℓ-th layer: 𝑓1 𝒙

𝑖
= 𝒛𝑖 𝑓2(𝒛) = 𝑦

If an input 𝒙 triggers a neuron 𝑧𝑖
to output a value 𝑓1 𝒙

𝑖
that

deviates significantly from its
statistical mean ҧ𝑧𝑖.
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Method: Detection

Evaluation Measurement of Monosemantic Neurons 

 Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic

neurons from low frequency of activation and high deviation of

activation value.

 But what is activation in our scenario? (Another issue)

𝑓1 𝒙
𝑖
= 𝒛𝑖 𝑓2(𝒛) = 𝑦

If an input 𝒙 triggers
a neuron 𝑧𝑖 to
output a value
𝑓1 𝒙

𝑖
that deviates

significantly from
its statistical mean ҧ𝑧𝑖.

Plan A: Set a threshold 𝜏

Plan B: Pairwise comparison

from different data samples
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Method: Detection

Evaluation Measurement of Monosemantic Neurons 

 Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic

neurons from low frequency of activation and high deviation of

activation value.

 Given 𝑖-th neuron, we denotes its historical samples given 𝑚 inputs

as {𝑧𝑖
1
, 𝑧𝑖

2
, … , 𝑧𝑖

𝑚
} and new value as 𝑧𝑖

𝑚+1 , we propose metric

Monosemantic Scale (MS) 𝜙:

where

Can measure the high deviation, and ҧ𝑧𝑖 is mainly decided by deactivated neurons.



31

Method: Detection

Evaluation Measurement of Monosemantic Neurons 

 Metric Online Computation Guarantee

The intuition behind our
theoretical guarantee:
 Define the metric on the

train inputs sequentially
allows us to calculate the
metric with incremental
computation.
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Method: Detection

Evaluation Measurement of Monosemantic Neurons 

 Given the set of measured MS {𝜙(𝑧1
𝑗
), 𝜙(𝑧2

𝑗
), … , 𝜙(𝑧𝑛

𝑗
)} over

neurons {𝑧1
𝑗
, 𝑧2

𝑗
, … , 𝑧𝑛

𝑗
} for input 𝐱[𝑗] , there are multiple ways to

select neurons to inhibit. For example:

 The maximum one

 The largest log 𝑛 neurons

 The certain ratio (1%n, 0.1%n)

 In our paper, we firstly inhibit the maximum one and leave other

settings as future work.
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Monosemantic Neuron Inhibition

 The goal is to deactivate monosemantic neurons to reduce the

monosemantic scale of the neural networks, i.e., become more

polysemantic or distributed.

 For the identified neuron 𝑧𝑖 as “highly monosemantic”, design deactivation

strategy to optimize the frontal model 𝑓1 ⋅ and following model 𝑓2 ⋅ so that:

 Reduce the activation degree of 𝑧𝑖 on input 𝑋

 reduce the reliance 𝒙 → 𝒛𝑖

 Reduce the dependence of output 𝑌 on 𝑧𝑖 activation

 reduce the reliance 𝒛𝑖 → 𝑦

𝑓1 𝒙
𝑖
= 𝒛𝑖 𝑓2(𝒛) = 𝑦

Expected

Method: Inhibition
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Monosemantic Neuron Inhibition

Intuitive Examples for Expected Goals

Method: Inhibition

 Reduce the dependence of output 𝑌
on 𝑧𝑖 activation

 Optimize 𝑓2(𝒛) = 𝑦

 Reduce the activation degree of 𝑧𝑖
on input 𝑋

 Optimize 𝑓1 𝒙
𝑖
= 𝒛𝑖 to 𝒛𝑖

′

before after

Activate the feature 
as soon as it comes

Activation becomes lower 
and closer to the mean

before after

Bad output without 
the neuron activated

Other neurons can 
contribute the prediction
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Monosemantic Neuron Inhibition

Naïve deactivation ways

Method: Inhibition

 Naïve (a): Deactivate by replacement  Naïve (b): Deactivate by compensation

𝑓1 𝒙
𝑖
= 𝒛𝑖 𝑓2(ത𝒛𝒏𝒈) = 𝑦

as 𝒛𝒊 is deactivated , 𝒇𝟐 has 
to rely on other neurons

The gradient is cut off.
𝒛𝑖 still activated 

𝑓1 𝒙
𝑖
= 𝒛𝑖 𝑓2(𝒛 + ത𝒛 − 𝒛 𝒏𝒈)

= 𝑓2(ത𝒛) = 𝑦

Deactivation:
output value = ത𝒛 

instead of 𝑧

The ⋅𝒏𝒈 denotes 
no-gradient, 

which is a scalar-
tensor in coding

𝒛𝑖 𝒛𝑖
′

Modify the output of neurons

𝒇𝟏 finds to get better results, 
𝒛𝒊 should be more activated

as 𝒛𝒊 is deactivated , 𝒇𝟐 has 
to rely on other neurons
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Monosemantic Neuron Inhibition

The proposed solution: Reversed Deactivation

Method: Inhibition

𝒛𝑖 𝒛𝑖
′

Modify the output of neurons

𝑓1 𝒙
𝑖
= 𝒛𝑖

𝑓2(−𝒛 + ത𝒛 + 𝒛 𝒏𝒈) = 𝑦

deactivation: ҧ𝑧

will be updated to rely less on 𝒛𝒊
as it receives a value = ത𝒛

(1) model find performance drops 
(2) model tries to optimize the neuron 𝑧𝑖

to intensify its activation
(3)negative direction: -> deactivation

can be optimized by 
gradients

reduce the activation degree of 𝒛𝒊 on input 𝑿
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Monosemantic Neuron Inhibition

 The theoretical guarantee on neuron inhibition

Method: Inhibition

Please refer to our paper for details.



38

To Inhibit Monosemantic Neurons

 First, design a metric to detect monosemantic neurons.
We propose an efficient and flexible metric Monosemantic Scale (MS).

 Second, design method to inhibit monosemantic neurons.
We point out problems of naïve methods and propose Reverse Deactivation.

 Third, a unified framework MEmeL.
Flexible and lightweight to add to any neural network.

Method: Summary
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Empirical Study

Experimental Setup

We hope our model MEmeL can be implemented on the top of

classic/powerful neural networks to improve their performance by inhibiting

Monosemantic neurons.

 Language Task

 Apply MEmeL to the benchmark model BERT on the public dataset GLUE

 Image Task

 Apply MEmeL to the benchmark model Swin-Transformer on the ImageNet

 Simulation Task (rainfall)

 Apply MEmeL to the benchmark model ConvGRU on the public dataset HKO-7
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Empirical Study

Experimental Setup

We hope our model MEmeL can be implemented

on the top of classic/powerful networks to improve

their performance by inhibiting monosemanticity.

 Our MEmeL is better than the original and naïve methods

 Beyond the basic setting (deactivating top-1 monosemantic

neuron in each batch), we additionally tuning the level of

inhibition to see the potential improvement can be achieved.
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Empirical Study

Experimental Setup

 We hope our model MEmeL can be implemented on the top of

classic/powerful neural networks to improve their performance by

inhibiting monosemantic neurons.

 We hope our model MEmeL can indeed reduce the monosemantic scale

of neural networks.

Compared with two naive methods, our reverse deactivation suppresses monosematic neurons.



43

Future Works

 Need to verify the effectiveness of our metric.

 Need to verify the proposition on large language models.

 Need to verify the effectiveness of our method on large language models.
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Future Works

 Need to verify the effectiveness of our metric.

 Need to verify the proposition on large language models.

 Need to verify the effectiveness of our method on large language models.

Calling for cooperation: full pretraining LLM with MEmeL.

2

2.5

3

3.5

4

4.5

5

5.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MS of the most activated feature across scales and layer depths

70m 160m 410m 1b 2.8b 6.9b

Larger model, 
lower monosemanticity!

Larger-scale

Full validation

New module

Following work is coming!
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Possible directions

 Memorization plays a different role in different tasks
→ Inhibit or promote monosemanticity should be task oriented

Future Works

Complex tasks require 
more polysemanticity

Modular Addition: expects 
grokking instead of memorization

Preferences alignment require 
more monosemanticity

During direct preference optimization: 
monosemanticity is enhanced

Our new work also finds 

MEmeL is especially 

effective for harder tasks.

Towards Understanding Grokking: An Effective Theory of Representation Learning. NeurIPS (2022)
Encourage or Inhibit Monosemanticity? Revisit Monosemanticity from a Feature Decorrelation Perspective. CoRR abs/2406.17969 (2024)
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Thank For Watching

Summary

We propose to learn from emergence to present a study on proactively inhibiting

the monosemantic neurons of artificial neural networks.

 The Evaluation Metric for Detecting Monosemantic Neurons

 Data-specific evaluation → A quantitative metric does not rely on datasets.

 Large computational overhead → Online computation guarantee.

 The Proactive Deactivation Method to Reduce Monosemantic Neurons

 Hard to deactivate → A theoretically supported method to suppress monosemantic neurons

Github Technical Report Paper
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