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Uy Background

Artificial Neural Networks

1943, Artificial Neuron 2012, AlexNet 2015, ResNet
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@ Background

Outstanding of Large Language Models (LLM) — Emergence

O Emergence: just increase the scale, abilities will emerge!

Refer to: Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance



@ Background

Outstanding of Large Language Models (LLM) — Emergence

O Emergence:
the scale not reach a certain threshold =) gradual improvement
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Wei, Jason, et al. "Emergent abilities of large language models." TMLR 2022.




@ Background

Outstanding of Large Language Models (LLM) — Emergence

O Emergence:

the scale not reach a certain threshold =) gradual improvement
the scale surpasses a certain threshold ——) rapid enhancement
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@ Background

Outstanding of Large Language Models (LLM) — Emergence

O Emergence:

the scale not reach a certain threshold =— gradual improvement
the scale surpasses a certain threshold =—————) rapid enhancement

One interesting question:

People increase the model scale and get better results,
but what has changed underlying the process?

Wei, Jason, et al. "Emergent abilities of large language models." TMLR 2022.



OUTLINE

* Background
* Motivation

* Method

* Experiment



@ Motivation

Interpreting Emergence

O Pioneer works interpret the performance of small and large-scale
models from the correlation between neurons and input features.
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@ Motivation

Interpreting Emergence

O Pioneer works interpret the performance of small and large-scale
models from the correlation between neurons and input features.
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@ Motivation

Motivational Experiments

O Larger models have lower monosemanticity!

O Turning off monosemantic neurons, a larger model has smaller error increase.
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@ Motivation

Motivational Experiments

O Larger models have lower monosemanticity!

O Given the corresponding/non-corresponding features, the difference in

activation values of large models is smaller than that of small models
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Finding Neurons in a Haystack: Case Studies with Sparse Probing, Trans. Mach. Learn. Res. 2023 (2023)



{llb

UJ Motivation

Motivational Experiments

O Larger models have lower monosemanticity!

O Turning off monosemantic neurons, a larger model has smaller error increase.
O Given the corresponding/non-corresponding features, the difference in

activation values of large models is smaller than that of small models

O Assumption

O The decrease in monosemanticity may be a key factor

in achieving higher performance as the model scale increases.

Finding Neurons in a Haystack: Case Studies with Sparse Probing, Trans. Mach. Learn. Res. 2023 (2023)



@ Motivation

Motivational Examples

O Assumption: The decrease in monosemanticity may be a key factor in achieving
higher performance as the model scale increases.

A student memorizes questions and Train ANNs with the observed training
answers for short-term gain. examples repeatedly.

As the amount of learning increases, As the amount of training increases, slowly
understand the problem inefficiently. reduce the monosemantic neurons.

376 x 53 = 19928
376 x 53 = 19928
376 x 53 = 19928
376 x 53 = 19928
376 x 53 = 19928 N
memorize repeatedly o \Ne e/ e
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W] Motivation

Motivational Examples

O Assumption: The decrease in monosemanticity may be a key factor in achieving
higher performance as the model scale increases.

The student is expected to dismantle the
problem and integrate the knowledge
points, and achieve the final answer via
reasoning.
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The large model disassembles the training
inputs, maps the features of samples to
multiple neurons, integrates the neurons,
and the output “emerges” !
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@ Motivation

Motivational Experiments from Literature

O We rather conclude the current paradigm of training neural
networks as a passive process in decreasing monosemantic neurons.

: One (question) to — One (feature) to | Monosemantic
Roleleang One (answer) One (neuron) | Neurons
Heuristic .| Understanding and - N to One ) Polysemantic Neurons
Learning Reasoning Oneto N Distributed Features

O Inspired by the emergence, we propose one question:

Can we proactively inhibit monosemantic neurons
in artificial neural networks to achieve high performance?



@ Motivation

Technical Challenges: Monosemantic Neuron Detection

O Existing detection has limitations and high computational overhead
O Limitation: require to calculate on manually designed and labeled feature

data sets.
O High Computational Overhead: Probes require training. And the calculation

requires to frequently count the inputs to neurons and activation values from
all neurons.

O Strictly defining monosemantic neurons is still under discussion in

quantitative analysis.
O Generality: Detection does not dependent on a specific data set.} Expected
O Efficiency: Detect monosemantic neurons during online training.



W] Motivation

Technical Challenges: Monosemantic Neuron Inhibition

O Simply prohibiting the activation of monosemantic neurons will
intensify the monosemanticity of artificial neural networks.

(O
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Summary of Technical Contributions

We propose to learn from emergence to present a study on proactively
inhibiting the monosemantic neurons of artificial neural networks.

O The Evaluation Metric for Detecting Monosemantic Neurons

O Data-specific evaluation —» A quantitative metric does not rely on data sets.

O Large computational overhead —» Online computation guarantee.

O The Proactive Deactivation Method to Reduce Monosemantic Neurons

O Hard to deactivate — A theoretically supported method to suppress

monosemantic neurons



OUTLINE

* Background
* Motivation

e Method

* Experiment



@ Method: Detection

Evaluation Measurement of Monosemantic Neurons
O Intuition: Design the metric ¢(H) of evaluating monosemantic
neurons from low frequency of activation and high deviation of

activation value.

O Low frequency: Existing work has divided hundreds of features, and the one-

to-one nature determines that their activations are sparse.
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Finding Neurons in a Haystack: Case Studies with Sparse Probing, Trans. Mach. Learn. Res. 2023 (2023)



@ Method: Detection

Evaluation Measurement of Monosemantic Neurons
O Intuition: Design the metric ¢(H) of evaluating monosemantic
neurons from low frequency of activation and high deviation of

activation value.

O High deviation: The distribution after corresponding feature input greatly

deviates from the overall distribution.
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@ Method: Detection

Evaluation Measurement of Monosemantic Neurons

O Intuition: Design the metric ¢(H) of evaluating monosemantic
neurons from low frequency of activation and high deviation of
activation value.

O But what is activation in our scenario? (Another issue)

Activation is a concept
across different data

instances since we need 1

to evaluate it on different L

inputs, features, neurons. t
i-th neuron A5 =2, wiiz ' 1

at ¢-th layer: zf = ot (hh), an example of dropout




@ Method: Detection

Evaluation Measurement of Monosemantic Neurons
O Intuition: Design the metric ¢(H) of evaluating monosemantic
neurons from low frequency of activation and high deviation of

activation value.

O But what is activation in our scenario? (Another issue)

If an input x triggers a neuron z;
to output a value (fi(x)), that

deviates significantly from its
statistical mean z;.

i-th neuron 75 =2 wi="
at £-th layer: ¢ _ ,eqney,




@ Method: Detection

Evaluation Measurement of Monosemantic Neurons
O Intuition: Design the metric ¢(H) of evaluating monosemantic

neurons from low frequency of activation and high deviation of

activation value.

O But what is activation in our scenario? (Another issue)
If an input x triggers Plan A: Set a threshold ¢

a neuron z; to :>

output a  value
(fi(x)), that deviates

significantly  from ”_ 1]\
its statistical mean z;. zi — (i(x'))i

Plan B: Pairwise comparison

zi — (fix2));

from different data samples

<
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@ Method: Detection

Evaluation Measurement of Monosemantic Neurons

O Intuition: Design the metric ¢(H) of evaluating monosemantic
neurons from low frequency of activation and high deviation of
activation value.

O Given i-th neuron, we denotes its historical samples given m inputs

[1] _[2]
Dz

[m+1]
L

as {z .,zi[m]} and new value as z , We propose metric

Monosemantic Scale (MS) ¢:

(Zl[m+1] _ 2;’)2 ;nZI Zi[j] @ Z;'nzl(zi[j] . Zi)z

[m+1]\ _ S, _ —
¢(zi ) = 52 \ where Z; = - 1

Can measure the high deviation, and z; is mainly decided by deactivated neurons.




@ Method: Detection

Evaluation Measurement of Monosemantic Neurons
O Metric Online Computation Guarantee

LEMMA 3.2. Denote piy, as the value of the sample mean z given
m samples, while vy, as the sample variance S2. When the (m + The intuition behlnd our
D™ ~ (m+b)" samples 2™, - 2I"*P] come, one can obtain  thaoretical guarantee:

the updated values via: . .
P O Define the metric on the

M + by, . .
. ”’:er”b, (8) train inputs sequentially
mb(m — ) b0+ (m — Vom allows us to calculate the
Umib = o D mah) T mibo1 O metric with incremental

computation.

b ) b )2
Where l’l’b — w andvlb — lel(z[ffz+l] I‘lb) ) WhiCh iS Of 0(1)

time and memory complexity as b is a constant.




@ Method: Detection

Evaluation Measurement of Monosemantic Neurons

O Given the set of measured MS {¢(z), dp(zS), ..., 927D} over
neurons {z7, 271 .., z2V} for input xUl, there are multiple ways to
select neurons to inhibit. For example:

O The maximum one
O The largest logn neurons

O The certain ratio (1%n, 0.1%n)

O In our paper, we firstly inhibit the maximum one and leave other
settings as future work.



1) Method: Inhibition

Monosemantic Neuron Inhibition

O The goal is to deactivate monosemantic neurons to reduce the
monosemantic scale of the neural networks, i.e., become more
polysemantic or distributed.

O For the identified neuron z; as "highly monosemantic” , design deactivation

strategy to optimize the frontal model £, (-) and following model £, (-) so that:

O reduce the reliance x - z;

O Reduce the activation degree of z; on input X
Expected{

O Reduce the dependence of output Y on z; activation

O reduce the reliance z; - y

(@) =z L@ =y




1) Method: Inhibition

Monosemantic Neuron Inhibition
Intuitive Examples for Expected Goals

O Reduce the activation degree of z; O Reduce the dependence of output Y
on input X on z; activation

O Optimize (f,(x)), = z; to z; O Optimize f,(z) =y
before after before

Activate the feature  Activation becomes lower Bad output without Other neurons can
as soon as it comes and closer to the mean the neuron activated contribute the prediction



U0 Method: Inhibition

Monosemantic Neuron Inhibition §>C z, B §>C z

Naive deactivation ways Modify the output of neurons

O Naive (a): Deactivate by replacement O Naive (b): Deactivate by compensation

. / —_— . ’/ —_ ~
way(a) : 2= Zng \ Deactivation: / way(b): z'=z+(Z=2)ng
output value =z
instead of z

The -,, denotes
no-gradient,
which is a scalar-
tensor in coding

(fl(x))i =2; f2(Zng) =y (f1(x))i =2zi  [2(z+(Z—2),y)
=f2(2) =y
The gradient is cut off. as z; is deactivated , f, has f; finds to get better results, as Zzi Is deactivated , f, has
z; still activated to rely on other neurons z; should be more activated to rely on other neurons




U0 Method: Inhibition

Monosemantic Neuron Inhibition §>C z, B §>C z

Modify the output of neurons
The proposed solution: Reversed Deactivation

Z=—z+(Z+ Z)ng —— deactivation: z

(fl(x))l- = Zj

as it receives a value = z

fo(—z+(Z + Z)ng) =Y
B2

can be optimized by (1) model find performance drops
gradients (2) model tries to optimize the neuron z;
to intensify its activation
(3) negative direction: -> deactivation

{ will be updated to rely less on z;

reduce the activation degree of z; on input X




1) Method: Inhibition

Monosemantic Neuron Inhibition
O The theoretical guarantee on neuron inhibition

LEMMA 3.3. Given a trained model f with 2 continuous derivatives
and a Lipschitz continuous gradient, where f achieves a desired output
o with minimal loss L(0), in which o = f(x) = fo(fi(x),x) =
f2(z,x) for input x based on its monosemantic neuron z in layer z,
suppose that L(f>(-)) monotonically increases with |z’ — z| for any
other value z’ that replaces z. Then, with a sufficiently small learning
rate I, by updating the model f with gradient descent based on the
neuron processeda by the KD metnod, tne activation of z on input X
can be inhibited.

Please refer to our paper for details.




@ Method: Summary

To Inhibit Monosemantic Neurons

O First, design a metric to detect monosemantic neurons.

We propose an efficient and flexible metric Monosemantic Scale (MS).
O Second, design method to inhibit monosemantic neurons.

We point out problems of naive methods and propose Reverse Deactivation.
O Third, a unified framework MEmel.

Flexible and lightweight to add to any neural network.

Neurons thatare detected to be highly monosemantic Neurons thatare detected to be less monosemantic
=) = <>
<> <> ( . N ﬁ !E :E ( . N <> .o-
@ Monosemantic T ) E Monosemantic @ N
ﬁj Neuron Detection : !f, ) ) Neuron Inhibition @
e = SO0 & 2 god
© . SPOL ro— s VN
L Update factors for metric = Eﬁ - Modify detected highly .f!
- @ and analyze neurons JC S ﬁ monosemantic neurons = @
@ @ . J ﬁ !ﬂ . J ®®

Neurons in z°

Monosemantic neurons to be modified Neurons has been modified to (zs)'
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@ Empirical Study

Experimental Setup

We hope our model MEmelL can be implemented on the top of
classic/powerful neural networks to improve their performance by inhibiting
Monosemantic neurons.

O Language Task
O Apply MEmel to the benchmark model BERT on the public dataset GLUE

O Image Task
O Apply MEmel to the benchmark model Swin-Transformer on the ImageNet

O Simulation Task (rainfall)
O Apply MEmel to the benchmark model ConvGRU on the public dataset HKO-7



@.@ Empirical Study

[ ]
EXpe rl mental Setu p Table 2: Results on ImageNet-1k dataset, where 3 sizes of

Swin-Transformer pretrained on ImageNet-22k are used as
backbones. The metric used is top-1 accuracy, where a higher

We h O pe O U r m Od eI M E m e L Ca n be i m p | e m e n ted value indicates better performance. The best results are indi-

cated in bold font.

on the top of classic/powerful networks to improve

Model Swin-T Swin-§ Swin-B
th . f b . h . b -t- t- -t Size 28M 50M 88M
eir performance by inhibiting monosemanticity. -
Naive (a) 81.0 83.4 34.6
Table 1: Results on GLUE Test datasets. We follow the setting of BERT to demonstrate results on 8 datasets and calculate the Naive (b) 81.0 33.4 85.1
average score. The scores are F1 scores for QQP and MRPC, Spearman correlations for STS-B, and accuracy scores for the other
tasks. All metrics are the larger the better with best results in bold font. MEmeL 81.1 834 85.1
MEmeL-Tune 81.1 83.5 85.2
Model MNLI-(M/MM) QQP ONLI SST-2 ColLA STS-B MRPC RTE Average
Original 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6 Table 3: Results on HKO-7 dataset. We initially trained a
Naive (a) 84.3/83.6 71.7 90.6 93.8 52.1 85.8 88.2 66.4 79.6 ConvGRU model for 20k steps to create the base model. The
Naive (b) 84.7/84.1 71.6 90.6 93.6 51.8 86.5 87.2 68.0 79.8 metrics used are B-MSE and B-MAE, where a smaller value
_ _ indicates better performance. The best results are in bold
MEmelL 84.8/83.9 71.7 90.9 93.6 54.5 86.6 87.6 68.2 80.2 . .
fonts. We repeated each experiment three times and reported
MEmelL.-Tune 84.8/83.9 71.7 91.2 93.7 35.7 86.6 89.0 68.2 80.5|
the average scores.

O Our MEmel is better than the original and naive methods

Model B-MAE B-MSE

O Beyond the basic setting (deactivating top-1 monosemantic RSk s S0
. .. . Naive (b) 1003.40 310.13

neuron in each batch), we additionally tuning the level of e o anear
MEmeL-Tune 998.81 298.16

inhibition to see the potential improvement can be achieved.




@.@ Empirical Study

Experimental Setup

O We hope our model MEmelL can be implemented on the top of
classic/powerful neural networks to improve their performance by
Inhibiting monosemantic neurons.

O We hope our model MEmelL can indeed reduce the monosemantic scale
of neural networks.

Table 3: Validation experiments conducted on the Swin-B model. We record the Decrease Ratios and Update Scales of 10k
neurons. The model that utilizes our Reverse Deactivation method is compared with those using two Naive methods and the
original Swin-B.

Methods Original Naive (a) Naive (b) | Reverse Deactivation
Average Decrease Ratio 0.003% [0.017% [0.044% 0.013%
Average Total Update Ratio 0.052% 0.118% 0.161% 0.189%

Compared with two naive methods, our reverse deactivation suppresses monosematic neurons.



@ Future Works

O Need to verify the effectiveness of our metric.

O Need to verify the proposition on large language models.

O Need to verify the effectiveness of our method on large language models.



@ Future Works

O Need to verify the effectiveness of our metric. Larger-scale

3 I\ Full validation
L\ B i B K
- New module

410n mthe MS for esponding featu
m the largest MS fo ndomly selected n n given different features
m Values when given corresponding feature ® Values when not given corresponding feature

. . o . . Fig. 2. Metric MS outputs much larger values for monosemantic neurons e b & I
Fig. 1. Metric MS outputs values significantly ghﬁgrenl when input contains (blue) compared with randomly selected neurons (green). The settings are the O OWI n WO r I S COI I I I n K
(blue) and not contains (green) the monosemantic features. Results are based same with Figure 1. For each randomly selected neuron, we records its output
on the most monosemantic 10 neurons across scales (70m to 2.8b) of pythia values given different features, and display the largest one as its relatively most
model, detected by sparse probing. sensitive feature.

O Need to verify the proposition on large language models.

MS of the most activated feature across scales and layer depths

0.8
0.75 W k-s statistic .

0.7 :

: Larger model,

0.6

0.55 45 l LI '

\ ower monosemanticity:

0.45

0.4 3.5

70m 160m 410m 1b 2.8b 6.9b
3

Fig. 3. Statistics of monosemanticity across scales. Randomly select 1000 2.5

neurons each scale and conduct Kolmogorov—Smirnov test for the scores of )

most monosemantic feature and the global scores. A lower k-s statistic refers 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

less outstanding of the scores of most monosemantic feature, indicating a
lower monosemanticity. One can observe the statistic results are negatively 70m 160m —0—410m —o—1b —e—2.8b ——6.9b
related with increasing scale.

O Need to verify the effectiveness of our method on large language models.
Calling for cooperation: full pretraining LLM with MEmelL.



g Future Works

Possible directions

O Memorization plays a different role in different tasks
— Inhibit or promote monosemanticity should be task oriented

Complex tasks require 14 Potential and Limitation of MEmeL Preferences alignment require
. . According to our hypothesis, MEmeL induces the model to accumu- . e
m O re p O Iys e m a n tl C Ity late general and abstract functionality instead of monosemanticity m O re m O n O S e m a n tl C Ity
for a specific task, which is consistent with the goal of per-taining.
Although MEmeL achieves good results during fine-tuning (demon-
le-2 strated at Main Experiments in subsection 4.2), the improvement is 1.0 4
. . expected to be even greater when it is applied to the pre-training c — Base-0
memorization phase. o DPO-1280
: & 0.8 DecP0-1280
g 2e-l £ —— DPO-6400
5 - o i === DecPO-6400
;3 Our neW Work aISO flnds E 0-6 — DPO-25600
£ 2e+0 ME Li | e, --- gigpilofsiioo
s — -
meL 1S especially ® ~=- DecP0-44800
'E 0.2
P f —~ . .
el effective for harder tasks. M -
3e-7 le-4 4e-2 0.0 0.2 0.4 0.6 0.8 1.0
learning rate Relative Layer Depth
Modular Addition: expects During direct preference optimization:
grokking instead of memorization monosemanticity is enhanced

Towards Understanding Grokking: An Effective Theory of Representation Learning. NeurlPS (2022)

Encourage or Inhibit Monosemanticity? Revisit Monosemanticity from a Feature Decorrelation Perspective. CoRR abs/2406.17969 (2024



@ Thank For Watching

Summary

We propose to learn from emergence to present a study on proactively inhibiting
the monosemantic neurons of artificial neural networks.

O The Evaluation Metric for Detecting Monosemantic Neurons

O Data-specific evaluation —» A quantitative metric does not rely on datasets.

O Large computational overhead — Online computation guarantee.

[0 The Proactive Deactivation Method to Reduce Monosemantic Neurons

O Hard to deactivate — A theoretically supported method to suppress monosemantic neurons
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