
D-MGN: A Distributed Mesh Graph Neural
Network for Scalable Engineering Simulation

Fu Lin∗, Jiasheng Shi∗, Weixiong Rao∗, Jiachuan Wang†, Lei Chen†

Chunyan Zhu‡, Haihua Wang‡, Shuo Xie§
∗ Tongji University, China

† Hong Kong University of Science and Technology, China
‡ Yanfeng International Automotive Technology Co., Ltd., China

§ Yanfeng International Seating System Co., Ltd., China
∗{2231531, wxrao}@tongji.edu.cn; † jwangey@connect.ust.hk, † leichen@cse.ust.hk

Abstract—With the success of deep learning, researchers have
developed Graph Neural Networks (GNNs) in the domain of
engineering simulation. To represent simulation objects, GNN
models are built on mesh graphs consisting of mesh elements.
Unfortunately, due to the difference between engineering simula-
tion and well-known GNN applications such as social networks,
existing distributed GNN models do not perform well on large-
scale mesh graphs, suffering from intensive message passing and
communication overhead across distributed workers. To tackle
this issue, in this paper, we propose a novel distributed mesh
graph network D-MGN. By a vertex-cut partitioning policy,
D-MGN divides large mesh graphs into partitions. After the
partitions are assigned to distributed workers, D-MGN allows
local communication-free message passing within each worker,
and performs distributed message aggregation with rather low
communication cost. Evaluation on an example dataset demon-
strates that D-MGN outperforms a recent work SAC by 38.66%
lower errors, 54.67% faster convergence time, and 119.22%
higher speedup ratio on 8 GPUs.

Index Terms—Distributed Graph Neural Network (GNN),
Graph Partitioning, Numerical Simulation.

I. INTRODUCTION

With the recent success of deep learning, researchers have
developed various learning models, particularly Graph Neural
Networks (GNNs), in the engineering domain of numerical
simulation. Example applications include structural mechanics
[1], [2] and aerodynamics [3], [4] . Unlike traditional nu-
merical simulations with running time ranging from minutes
to even days, GNN models achieve much faster prediction
time (e.g., milliseconds) and acceptable accuracy. To represent
engineering simulation, GNN models are built on mesh graphs,
consisting of discretized mesh elements (e.g., triangles or
tetrahedra). The number of mesh elements is typically large,
e.g., tens of thousands or millions, for accurate simulation.

Unfortunately, existing distributed GNN models [5]–[7]
may not perform well on large mesh graphs. This is mainly
due to the difference between engineering simulation and
the widely studied GNN applications, e.g., social networks.
Specifically, the node degrees of social networks frequently
follow a power-law distribution. Distributed GNN models [5]–
[7] frequently adopt the so-called edge-cut graph partitioning

Corresponding author: Weixiong Rao (wxrao@tongji.edu.cn).

Fig. 1: Numerical Simulation of a car steering wheel. From left to
right: (a) Simulation input: mesh structure and external force F . (b)
Simulation result: stress field computed by a numerical solver.

policy on social networks for parallel training. That is, each
graph vertex is within only one worker, and some graph edges
are across distributed workers. Yet, the degree distribution of
mesh graphs in this paper is rather even. As shown in the
example stress field simulation of Fig. 1, the car steering wheel
is discretized into mesh elements with an even distribution of
node degrees. Our real steering wheel dataset shows that node
degrees range from 3 to 39 with an average of 5.55. Given
the even mesh graphs, the edge-cut partitioning policy suffers
from many edge-cuts across distributed workers, at the cost of
intensive message passing and communication overhead.

To address the issues above, in this paper, we develop
a novel distributed GNN model for large-scale engineering
simulation, namely Distributed Vertex-cut Mesh Graph Net-
work (D-MGN), by two following techniques. (1) We first
propose a vertex-cut graph partitioning scheme to divide a
mesh graph into multiple partitions by edge directions. That is,
those edges with similar edge directions are grouped together
into the same partitions. Thus, the member edges within graph
partitions involve similar edge directions, and each edge is
within only one partition. Instead, for a certain graph vertex,
we replicate its replicas across graph partitions. (2) After
the partitions are assigned to distributed workers, D-MGN
allows local communication-free message passing within each
worker, and requires rather low communication cost to perform
distributed message aggregation across distributed workers. In
summary, we make the following contribution.

• To the best of our knowledge, D-MGN is the first to
perform scalable engineering simulation via distributed
GNN on mesh graph partitions.

• D-MGN adopts (i) local message passing (MP) within
graph partitions with no communication cost and further
tunes a small number of local MP iteration steps for
high efficiency, and (ii) distributed MP only one time to
aggregate graph embeddings across partitions with trivial
communication cost.

• Evaluation on two datasets demonstrates the superiority
of D-MGN. For example, on the Beam dataset, com-
pared to the very recent work SAC [5], D-MGN leads
to 38.66% smaller RMSE, 54.67% faster convergence
time, and 119.22% higher speedup ratio on 8 GPUs.
Moreover, during an almost 15-month deployment in an
automotive company, engineers have evaluated D-MGN
on 529 new steering wheel products with 16.5% shorter
product design cycles.

II. RELATED WORK

GNN-based Simulation Model. GNN has emerged as a
promising solution to model the topologies and interactions of
physical systems. MGN [8] exploits GNN to simulate various
physical systems by leveraging mesh graphs to represent the
geometric structure of such systems. Yet, flat GNNs in these
works do not perform well in learning complex geometric
structure due to the limited range of message passing. To
address this issue, MS-MGN [4] and other works [3], [9]
introduce hierarchical GNNs to extend the range of message
passing for better receptive field on coarser mesh elements.
However, these approaches perform only on hundreds of mesh
elements, leading to low scalability.

Distributed GNN Training. Since GNNs perform message
passing between every node and its neighbors, efficient GNN
training over large graphs becomes a challenge due to high
communication cost across distributed workers [7]. DistDGL
[6] exploits METIS [10] for edge-cut graph partitioning to
minimize total communication cost, while SAC [5] employs
Graph-VB [11] to balance inter-partition communication. G3
[12] eliminates GNN level-wise synchronization by sending
the updated embeddings to other workers in a peer-to-peer
fashion, instead of waiting for all workers to complete the
computation within a level. MGG [13] divides computing tasks
into local and remote tasks (where the latter ones require
communication), and performs local tasks during the remote
task communication phase to reduce waiting time. However,
they still suffer from peer-to-peer communication overhead.
Instead, Cluster-GCN [14] exploits an edge-cut-based SM-
Cluster partitioning approach to cluster similar nodes together.
During the training phase, Cluster-GCN focuses on local
learning within each partition, and yet completely ignores the
message passing of edge-cuts across partitions. DistGNN [15]
adopts vertex-cut partitioning and allows using stale embed-
dings, instead of message passing, during training to avoid
waiting for communication to complete. Thus, the two works
[14], [15] mitigate distributed communication cost during
training, leading to high scalability but at the cost of lower
accuracy (caused by the missed cross-partition embeddings).

III. PROBLEM DEFINITION

Mesh Graph. To perform numerical simulation, profes-
sional engineers can exploit a mesh generator (e.g., Hyper-
Mesh) to discretize the continuous geometric domain D of
the simulation object into surface or volume mesh elements,
e.g., triangles or tetrahedra, depending upon simulation re-
quirements. This discretization creates a mesh graph G =
(V,E,C). Here, V = {vi} indicates mesh nodes with space
coordinates xi, and E = {{vi,vj}} with i ̸= j denotes the
edges, and C = {ci} is the set of mesh elements surrounded
by nodes and edges. Each element ci is a subdomain of D
(e.g., triangles in a triangular mesh structure) and ∪ci = D.

Initial-boundary conditions. Initial conditions indicate the
initial node state u0 (vi, 0) at time t = 0. Boundary conditions
u(vi, t) define the behavior on the boundary of the geometric
domain D at a certain time t. In Fig. 1, for the external force
F applied to those nodes V′ ⊆ V, we have u(vi, t) = f(t)
with vi ∈ V′ and f(t) = F/|V′|, assuming that the force F
is applied to every node vi ∈ V′.

Given the mesh graph and initial-boundary conditions
above, a traditional numerical solver can be used to derive
simulation results u (vi, t), i.e., the node state vi at convergent
time step t. Fig. 1 gives an example simulation result u(·),
i.e., the stress field on each vertex. The numerical simulation
typically requires high running time, ranging from minutes to
even days, depending upon the number of mesh elements and
initial-boundary conditions. By using numerical simulation
results as ground truth, we expect that the learned GNN model
provides fast prediction time, e.g., seconds.

Definition 1 (Mesh Graph Simulation Regression Model):
Given a large mesh graph G = (V,E,C) with initial-
boundary conditions u0 and F , we learn a mesh graph neural
network regression model R(·) with U = R(G, u0, F), where
U = {u (vi, t)} is the ground truth.

To learn the model above, we follow the widely used
message passing scheme [4], [8] to update the edge and node
state embeddings of the mesh graph in the l-th iteration.

e⃗l+1
ij ← fE (⃗e

l
ij ,v

l
i,v

l
j), vl+1

i ← fV (vl
i,
∑

j e⃗
l+1
ij) (1)

In this equation above, fE and fV are Multi-Layer Per-
ceptrons (MLP). For brevity, we denote the message passing
update (in short MP) operation in Eq. (1) as follows.

(⃗el+1
ij ,vl+1

j)← MP(⃗el
ij ,v

l
i,v

l
j) (2)

Definition 2 (Vertex-cut Graph Partitioning): A large graph
G = {V,E} is divided into K partitions {Gk = (Vk,Ek)}
with E = ∪Ek and Ek ∩ Ek′ = ∅ for any 1 ≤ k ̸= k′ ≤ K,
while vertices may be replicated across partitions.

Definition 3 (Distributed GNN Training): Given a large
mesh graph G with K partitions, the distributed GNN model
assigns such partitions onto a number P of distributed workers,
i.e., GPUs. Each worker processes local partitions (i.e., a
subset of graph nodes and edges) in parallel for speedup. The
goal is to balance the workloads and minimize inter-worker
communication overhead meanwhile with acceptable accuracy
of the regression model R(·).

Simulation ResultMesh Graph

Worker #1

Partition 3

Partition 2

Partition 1

Worker #2

Worker #3

Partition 3

Partition 2

Partition 1(1) Graph
Partitioning

(2) Partition
Assignment

(3) Local
Msg Passing

(4) Dist. Msg
Aggregation

Worker #0
（master）

Pre-Processing Learning (Encoder-Processor-Decoder)

Fig. 2: Workflow of D-MGN

IV. SOLUTION DETAIL

A. Overview

Fig. 2 shows an example workflow of D-MGN in multiple
workers, involving two following stages. In the pre-processing
stage, when given a large mesh graph and distributed workers,
the master node (e.g., # 0) of D-MGN first adopts the proposed
vertex-cut policy to generate 3 graph partitions, and then
assigns the partitions to the workers (# 1, ... , # 3).

In the learning stage, D-MGN logically follows the
Encoder-Processor-Decoder framework [4], [8]. An MLP en-
coder initializes node and edge embeddings, the processor
exploits message passing (MP) to update node and edge em-
beddings, and the decoder finally generates simulation results
from the updated embeddings. Physically, in Fig. 2, the MP
involves local MP within each worker and distributed aggre-
gation across workers. Each worker exploits the encoder and
local MP within each graph partition to learn local node and
edge embeddings in parallel. Given the vertex-cut partitioning
in Def. 2, each graph node is with distributed replicas of node
embeddings. Thus, via distributed MP, D-MGN collects the
three replicas to aggregate the collected embeddings, which are
decoded to generate final simulation results. D-MGN requires
rather low communication overhead caused only by distributed
aggregation across workers, but with no communication cost
during the local MP within workers.

D-MGN can comfortably extend the workflow above to
support hierarchical mesh graphs using a level-by-level as-
signment. Starting from the bottom-level graph consisting of
a few coarse elements at large size, D-MGN chooses an
available worker to accommodate such coarse mesh graphs,
until the capacity limit of the chosen worker is met. If the
currently chosen worker cannot accommodate an entire mesh
graph at a certain level, D-MGN performs the vertex-cut
graph partitioning scheme, such that the worker has sufficient
capacity to accommodate only a subset of graph partitions. By
repeating this level-by-level assignment, D-MGN distributes
mesh graphs and partitions to workers. After this assignment,
D-MGN again performs local MP and distributed aggregation
above to generate final simulation results.

B. Vertex-cut Graph Partitioning

In Fig. 3, D-MGN performs the vertex-cut policy to divide
a certain mesh graph into K partitions and next assigns the

partitions to distributed workers. For simplicity, the master
node of D-MGN exploits the classic k-means algorithm to
cluster graph edges by edge directions. That is, by the cosine
similarity between edge directions, D-MGN groups graph
edges with similar directions into the same clusters (i.e., par-
titions). During the grouping step, D-MGN computes an edge
direction vector by e⃗ij = xj − xi, and the cluster direction
vector by the average of its member edge direction vectors. D-
MGN stops the clustering step when cluster membership does
not change, and finally generates K partitions. Practically, we
set K = 3 or 4 to balance partition size and edge direction
diversity. A too small K may not sufficiently differentiate
edge directions while a too large K leads to small partitions,
compromising global representation. In Fig. 3, we divide the
mesh graph into 3 partitions. Each edge appears within only
one partition and yet every node is replicated across three
partitions (see the vertex-cut graph partition in Def. 2).

Mesh Graph Three Graph Partitions

Fig. 3: Vert-Cut Graph Partitioning by Edge Directions

The graph division scheme above offers two following
advantages. (1) The member edges within each partition
diversely appear within the original graph (i.e., the entire
geometric domain). This diverse distribution can better learn
global representation. Instead, for the edge-cut-based partition-
ing widely used in previous works [5], [6], [12], [14], the
member nodes and edges within each partition are densely
clustered within a small area of the geometric domain, not
good for global representation. (2) Within each partition, the
edges are further connected by graph vertices into disjoint
connected components (CCs). The three partitions from left to
right consist of 4, 5, and 2 CCs, respectively. We will show that
D-MGN exploits these partitions and CCs to more efficiently
perform local message passing in parallel.

C. Encoder and Local Message Passing

In this section, we give the details of the encoder and local
MP to learn local node and edge embeddings. The two steps
occur locally within each worker with no communication.

Encoder. The encoder learns initial edge and node embed-
dings via Multi-Layer Perceptrons (MLP) on initial node states
(regarding initial-boundary conditions) in an input large mesh
graph G. Note that D-MGN can support hierarchical mesh
graphs. Thus, for each coarse graph, D-MGN can generate
the associated initial node states by barycentric interpolation
[16] on the input mesh graph G. When given the interpolated
initial node and edge states on coarse graphs, we exploit MLP
to generate the associated initial node and edge embeddings.

Local MP. The processor updates local node and edge
embeddings within graph partitions via the proposed edge-
directed MP. For a given graph partition Gk with 1 ≤ k ≤ K,
its member edges share similar edge directions. D-MGN

performs the edge-directed MP on this partition to update the
local node and edge embeddings.

(⃗ek,l
ij ,vk,l

i)← MP(⃗ek,l−1
ij ;vk,l−1

i) (3)

In the equation above, a key parameter is the number of Lk

MP iteration steps with 1 ≤ l ≤ Lk. We tune the parameter
Lk as follows. Recall that in Fig. 3, each graph partition
involves multiple connected components (CCs). By computing
the diameter of each CC within a partition, we choose the
largest one as the number Lk.

Choosing the above largest CC diameter makes sense,
offering two unique advantages. (i) For the local edge-directed
MP, D-MGN in parallel performs local MP on the granularity
of much smaller CCs. Compared to the original MP on the
entire mesh graph or a partition, the local MP on the CCs
leads to much smaller MP overhead. (ii) Meanwhile, due to the
diverse distribution of graph edges across the entire geometric
domain, the edge-directed MP ensures sufficient coverage of
the entire mesh graph for better global view.

D. Distributed Aggregation and Decoder

After the local node and edge embeddings are learned
above, the master node in D-MGN initiates the distributed
aggregation of local embeddings across the workers. Each
worker then aggregates node embeddings from others and
finally decodes the aggregated embeddings to generate simula-
tion results. Unlike the local MP above requiring the iterations
of Lk MP steps, D-MGN performs the distributed aggregation
only one time, leading to trivial communication cost.

Distributed Aggregation. After updating node embeddings
by the local edge-directed MP above, each worker aggregates
the needed replicas of node embeddings from other workers.

vi ← gV ([v1,Lk

i , . . . ,vK,Lk

i]) (4)

In the equation above, D-MGN concatenates the K replicas
of node embeddings vk

i , which are then aggregated by MLP
gV to generate the final node embeddings.

Decoder. After the MP is performed on the fine mesh graph
G, the decoder exploits MLP to convert the aggregated node
embeddings back to the needed simulation results (e.g., stress
field) of every node on the mesh graph G.

Algorithm 1: Distributed Workflow of D-MGN

Input: Graph Partitions G1, . . . ,GK

Output: Simulation Result û (vi) with vi ∈ G
1 Assign graph partitions to available workers;
2 for 1 ≤ k ≤ K do // the k-th partition
3 Encode an initial node embedding vk,0

i ;
4 Encode an initial edge embedding e⃗k,0

ij ;
5 for 1 ≤ l ≤ Lk do // the l-th step
6 Update vk,l

i and e⃗k,l
ij by local MP; // Eq. (3)

7 end
8 end
9 Update vi by dist. aggregation; // Eq. (4)

10 û (vi)← decode(vi) for every node vi ∈ G;

E. Algorithm Detail

Finally, Alg. 1 gives the main steps of distributed GNN
learning stage, by taking the K graph partitions as input and
generating the simulation results of every node in the input
mesh graph G as output. This algorithm mainly involves two
parts: the lines 1-8 within each partition (a.k.a worker) to
perform the initial encoding and local MP, and the lines 9-
10 by the master node to perform distributed aggregation and
final decoding to generate simulation results.

Here, the encoder, local MP, distributed aggregation, and
decoder above are all implemented by MLPs. Each MLP
consists of two fully connected layers of hidden embedding
size of 128 with ReLU activations and layer normalization.
By the input mesh graph G and ground truth of simulation
results, we use the loss function L = 1

n (û (vi)− u(vi))
2 to

learn the network parameters of MLPs by the Adam optimizer.

V. EVALUATION

A. Experimental Setup

1) Datasets: We use two datasets: one synthetic (Beam)
and one real (SteeringWheel). For each dataset, we use 80% of
samples for training, 10% for validation, and 10% for testing.

TABLE I: Statistics of Two Datasets
Dataset Beam SteeringWheel

Total # of Graph Samples 555 239
Avg. Nodes per Graph Sample 213691 72061
Avg. Edges per Graph Sample 638339 200526
Max./Min./Avg. Degree per Node 8/3/5.97 39/3/5.55
Numerical Solver ABAQUS LS-DYNA
Numerical Sim. Time 8.5min 20min

• Beam. We generate the 2D Beam dataset by a numerical
solver ABAQUS [17] to simulate deformation responses
of rectangular beams subjected to an external force. With
the size 15 × 100 mm2, each Beam sample contains a
circular hole with a 5 mm diameter. We vary the hole’s
center from the initial center ⟨5, 5⟩mm by a 2.5mm step
size over 3 horizontal and 37 vertical steps, respectively,
and generate 111 samples. By fixing the bottom plane
of the Beam structure, we apply a 300N (Newton) force
with angles varying from −60◦ to 60◦ by a 30◦ step size,
generating 5 loading settings. After dividing each Beam
into triangular mesh elements, we exploit ABAQUS to
have the numerical stress field as ground truth.

• SteeringWheel. The real dataset includes 239 samples of
3D steering wheels, provided by an automotive supplier.
Following an industry trial standard, engineers apply a
700N force along the negative z-axis at the wheel rim,
with the steering column fixed at the bottom plane. Each
sample is divided into hybrid mesh elements consisting of
hexahedrons, pentahedrons and tetrahedrons. Engineers
employ the industry-level numerical solver LS-DYNA
[18] to generate the stress field as ground truth.

2) Baselines: To the best of our knowledge, previous works
focus on distributed GNN models on flat graphs. Thus, we
first compare D-MGN with four distributed GNN models on

0 4 8 12 16 20 24 28 32
Training Time (s) ×104

0
20
40
60
80

100
120
140
160

Te
st

 R
M

SE
Beam

0 1 2 3 4 5 6
Training Time (s) ×104

0
5

10
15
20
25
30
35

Te
st

 R
M

SE

SteeringWheel

Fig. 4: Time-to-accuracy Study.

2 4 8
of workers

0
1
2
3
4
5
6
7

Ep
oc

h
Ti

m
e

(s
)

×102 Beam

2 4 8
of workers

0
1
2
3
4
5
6
7

Ep
oc

h
Ti

m
e

(s
)

×102 SteeringWheel

2 4 8
of workers

0

2

4

6

8

10

Sp
ee

du
p

Ra
tio

Beam

2 4 8
of workers

0

2

4

6

8

10

Sp
ee

du
p

Ra
tio

SteeringWheel

Fig. 5: Scalability Study (Top: Epoch Time; Bottom: Speedup).

flat mesh graphs for fairness, and finally evaluate D-MGN on
hierarchical mesh graphs.

DistDGL [6] uses METIS for edge-cut graph partitioning
and node replication to reduce communication; SAC [5] opti-
mizes communication cost by only sharing necessary data and
balancing partitioning via Graph-VB; G3 [12] speeds up GNN
training by sharing embeddings peer-to-peer and overlapping
computation and communication; MGG [13] reduces waiting
time by doing local tasks during communication; Cluster-
GCN [14] exploits the so-called SM-Cluster graph partitioning
approach to achieve linear scalability by removing feature
communication during training; DistGNN [15] adopts vertex-
cut partitioning via Libra and achieves high scalability by
using stale embeddings during training.

3) Evaluation Metric: We measure the prediction error by

RMSE =
(

1
N

∑N
i=1

1
ni

∑ni

j=1(ûij − uij)
2
) 1

2

, where ni is the
number of nodes in i-th graph sample, and uij and ûij are the
ground truth and predicted value of the j-th node in the i-th
graph sample, respectively. In addition, we compute the epoch
time by the total training time to process the entire training
dataset, and speedup ratio by the ratio of the epoch time on
multiple GPUs against the one on a single GPU.

4) Environment: We implement D-MGN and baselines by
PyTorch v2.1.0 and CUDA v12.1, and evaluate experiments on
4 servers, each with two 16-core Xeon(R) Gold 6430 CPUs
and 2 NVIDIA GeForce RTX 4090 GPUs, thus total 8 GPUs.

B. Performance Study

1) Time-to-accuracy Study: Fig. 4 first gives the time-to-
accuracy study on 8 GPUs in 4 servers. On both datasets,
D-MGN consistently performs best with the smallest RMSE
and fastest convergence time among all seven distributed GNN

models. For example, on the Beam dataset, D-MGN leads to
38.66% smaller RMSE and 54.67% faster convergence time
than the most recent work SAC [5]. Compared to Cluster-GCN
and DistGNN, D-MGN involves almost equally convergence
time but with much lower RMSE, mainly because Cluster-
GCN and DistGNN miss the MP across partitions.

2) Scalability Study: Fig. 5 (top) gives the epoch (training)
time of seven models on 2 - 8 GPUs. (i) When the number of
GPUs grows from 2 to 8, the epoch time of DistDGL, SAC,
G3 and MGG, all first decrease and then converges to a stable
value. It is mainly because the increased communication over-
head across GPUs may compromise the benefit of parallel MP.
(ii) Instead, consistent with Fig. 4, Cluster-GCN, DistGNN and
D-MGN lead to smaller epoch time. It is mainly because they
both in parallel perform local MP within partitions without
communication cost.

Fig. 5 (bottom) plots the speedup ratios of seven models.
For example on 8 GPUs, DistDGL, SAC, G3 and MGG,
are all with the speedup ratios ≈ 3× for both datasets. In
contrast, Cluster-GCN, DistGNN and D-MGN achieve rather
high speedup ratios ≈ 7×. Here, although suffering from a
slightly lower speedup ratio, D-MGN outperforms Cluster-
GCN and DistGNN by much smaller RMSE. As shown in
Fig. 4, compared to Cluster-GCN, D-MGN leads to 36.30%
and 44.23% smaller RMSE on two datasets. In summary,
D-MGN outperforms Cluster-GCN and DistGNN with much
lower RMSE, and comparable epoch time and speedup ratios.

We give the behind rationale of the evaluation result above
as follows. DistDGL, SAC, G3 and MGG all require dis-
tributed communication across workers at every MP iteration
step. When on 8 workers, their communication cost becomes
much significant. In contrast, both Cluster-GCN, DistGNN and
D-MGN do not require communication during local MP within
each partition. D-MGN further requires distributed aggrega-
tion and leads to slightly smaller speedup ratios. However,
the higher speedup ratios of Cluster-GCN and DistGNN are
caused by the missed message passing across partitions, at the
cost of rather higher RMSE.

In terms of prediction time, on the two datasets, D-MGN
only takes on average 149.51 ms and 50.92 ms per sample on
8 GPUs, significantly faster than the FEM solving time of 8.5
min and 20 min, respectively (see Table I). Note that due to
the more graph nodes and edges, the Beam dataset leads to
higher prediction time than the SteeringWheel dataset.

3) Load Balancing: As shown in Fig. 6, D-MGN illustrates
roughly equal numbers of graph nodes and edges within each
of the 8 partitions (workers), leading to the nearly same epoch
time across the 8 GPU workers.

TABLE II: Evaluation of 3 Hierarchical GNNs on 8 GPUs
Beam SteeringingWheel

Level RMSE Epoc Speedup RMSE Epoc Speedup
1 46.78 138.20 6.93 7.15 36.06 4.59
2 11.11 133.30 6.88 6.69 31.91 4.45
3 6.43 126.51 6.85 6.35 26.86 4.35

When the number K of partitions varies from 1 to 8, D-
MGN essentially involves different neural network structures,

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Workers

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Nu

m
. o

f N
od

es
/E

dg
es ×105 Beam

Nodes
Edges

0

50

100

150

200

Ep
oc

h
Ti

m
e

(s
)Epoch Time

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Workers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

. o
f N

od
es

/E
dg

es ×105 SteeringWheel
Nodes
Edges

0

50

100

150

200

Ep
oc

h
Ti

m
e

(s
)Epoch Time

Fig. 6: Workload Statistics on 8 GPUs.

learns significantly various MLP network parameters, and thus
leads to different RMSE. Our further evaluation reveals that
K = 4 partitions lead to the least RMSE. Either a too small
or too large number K results in higher RMSE.

4) Study of Hierarchical Mesh Graphs: Finally, in Table
II, we first generate three-level mesh graphs (say G1, G2 and
G3 with the smallest, middle, and greatest element size) by
the popular Delaunay triangulation [19], and next evaluate the
performance on three hierarchical GNN models using the only
one-level mesh graph G1, two-level graphs G1,G2 and three-
level graphs (G1,G2 and G3). Here, 3-level mesh graphs are
sufficient, because coarse mesh graphs with too large element
size suffer from the element fragmentation issue [20].

In this table, when the number of total levels grows from
1 to 3, the RMSE and epoch time become smaller and
yet the speedup ratio remains roughly consistent with slight
decreases. That is, multilevel mesh graphs effectively represent
global and local views together with smaller RMSE and
faster training convergence time. Meanwhile, multilevel mesh
graphs lead to more communication cost across workers,
and the speedup ratio becomes smaller. However, since the
computational overhead of MP mainly focus on fine mesh
graphs, multilevel mesh graphs (i.e., more coarse graphs) may
not lead to significant decrease of the speedup ratio.

Deployment: We have deployed D-MGN in the produc-
tion environment of an automotive company for almost 15
months. After D-MGN is trained by 239 real steering wheel
history data, engineers have evaluated the stress field of 529
new steering wheel products. Compared to traditional FEM
solvers, D-MGN provides fast simulation prediction results,
and engineers then quickly re-optimize product design with the
16.5% shorter product design cycles from prototype design,
simulation to trial of car steering wheels.

VI. CONCLUSION AND ON-GOING WORK

In this paper, we propose a novel distributed mesh graph
network D-MGN for efficient GNN training in distributed
workers. By the proposed vertex-cut partitioning policy, D-
MGN assigns each edge uniquely into only one partition (a.k.a
worker), meanwhile with distributed replicas of a certain node
across partitions. Thus, D-MGN allows local message passing
within each worker with no communication, and requires
rather low communication cost to perform distributed mes-
sage aggregation across distributed workers. Our preliminary
evaluation on two datasets demonstrates the superiority of D-
MGN. As on-going works, we plan to develop scalable GNN
models used for large-scale numerical simulation with tens of
millions of mesh elements on hundreds of distributed workers.

Acknowledge: This work is partially supported by National Key R&D
Program of China (2022YFE0208000, 2023YFF0725100), Shanghai Key
Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems,
National Science Foundation of China (NSFC) under Grant No. U22B2060,
Guangdong-Hong Kong Technology Innovation Joint Funding Scheme Project
No. 2024A0505040012, the Hong Kong RGC GRF Project 16213620, RIF
Project R6020-19,AOE Project AoE/E-603/18, Theme-based project TRS
T41-603/20R, CRF Project C2004-21G, Guangdong Province Science and
Technology Plan Project 2023A0505030011, Guangzhou municipality big
data intelligence key lab, 2023A03J0012, Hong Kong ITC ITF grants
MHX/078/21 and PRP/004/22FX, Zhujiang scholar program 2021JC02X170,
Microsoft Research Asia Collaborative Research Grant, HKUST-Webank joint
research lab and 2023 HKUST Shenzhen-Hong Kong Collaborative Innovation
Institute Green Sustainability Special Fund, from Shui On Xintiandi and the
InnoSpace GBA.

REFERENCES

[1] F. Lin, J. Shi, Z. Gao, Z. Chu, Q. Ma, H. Yu, and W. Rao, “Physical
system simulation based on deep representation learning for 3d geo-
metric features,” Journal of Computer Applications (Chinese Journal),
pp. 1–11, 2023.

[2] J. Shi, F. Lin, and W. Rao, “Learning to simulate complex physical
systems: A case study,” in CIKM 2023, pp. 4284–4288, 2023.

[3] M. Lino, S. Fotiadis, A. A. Bharath, and C. D. Cantwell, “Towards
fast simulation of environmental fluid mechanics with multi-scale graph
neural networks,” in ICLR Workshop on AI4ESS, 2022.

[4] M. Fortunato, T. Pfaff, P. Wirnsberger, A. Pritzel, and P. W. Battaglia,
“MultiScale MeshGraphNets,” CoRR, vol. abs/2210.00612, 2022.

[5] U. Mukhopadhyay, A. Tripathy, O. Selvitopi, K. A. Yelick, and A. Buluç,
“Sparsity-aware communication for distributed graph neural network
training,” in ICPP 2024, pp. 117–126, 2024.

[6] D. Zheng, X. Song, C. Yang, D. LaSalle, and G. Karypis, “Distributed
hybrid CPU and GPU training for graph neural networks on billion-scale
heterogeneous graphs,” in KDD ’22, pp. 4582–4591, 2022.

[7] M. Besta and T. Hoefler, “Parallel and distributed graph neural networks:
An in-depth concurrency analysis,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 46, no. 5, pp. 2584–2606, 2024.

[8] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia,
“Learning mesh-based simulation with graph networks,” in ICLR 2021,
2021.

[9] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, A. M. Stuart,
K. Bhattacharya, and A. Anandkumar, “Multipole graph neural operator
for parametric partial differential equations,” in NeurIPS 2020, 2020.

[10] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, 1998.

[11] S. Acer, R. O. Selvitopi, and C. Aykanat, “Improving performance
of sparse matrix dense matrix multiplication on large-scale parallel
systems,” Parallel Comput., vol. 59, pp. 71–96, 2016.

[12] X. Wan, K. Xu, X. Liao, Y. Jin, K. Chen, and X. Jin, “Scalable and
efficient full-graph GNN training for large graphs,” Proc. ACM Manag.
Data, vol. 1, no. 2, pp. 143:1–143:23, 2023.

[13] Y. Wang, B. Feng, Z. Wang, T. Geng, K. J. Barker, A. Li, and Y. Ding,
“MGG: accelerating graph neural networks with fine-grained intra-kernel
communication-computation pipelining on multi-GPU platforms,” in
OSDI 2023, pp. 779–795, 2023.

[14] W. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C. Hsieh, “Cluster-GCN:
An efficient algorithm for training deep and large graph convolutional
networks,” in KDD 2019, pp. 257–266, 2019.

[15] V. Md, S. Misra, G. Ma, R. Mohanty, E. Georganas, A. Heinecke,
D. Kalamkar, N. K. Ahmed, and S. Avancha, “DistGNN: scalable
distributed training for large-scale graph neural networks,” in SC ’21,
2021.

[16] J. Berrut and L. N. Trefethen, “Barycentric Lagrange Interpolation,”
SIAM Rev., vol. 46, no. 3, pp. 501–517, 2004.

[17] Dassault Systèmes, “Abaqus finite element analysis.” https://www.3ds.
com/products/simulia/abaqus, 2024.

[18] ANSYS, Inc., “LS-DYNA.” https://lsdyna.ansys.com/, 2024.
[19] Y. S. Elshakhs, K. M. Deliparaschos, T. Charalambous, G. Oliva, and

A. C. Zolotas, “A comprehensive survey on Delaunay triangulation:
Applications, algorithms, and implementations over CPUs, GPUs, and
FPGAs,” IEEE Access, vol. 12, pp. 12562–12585, 2024.

[20] B. Wördenweber, “Finite element mesh generation,” Comput. Aided
Des., vol. 16, p. 285–291, Sept. 1984.

