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Abstract

Citation classification, which identifies the intention behind aca-
demic citations, is pivotal for scholarly analysis. Previous works
suggest fine-tuning pretrained language models (PLMs) on citation
classification datasets, reaping the reward of the linguistic knowl-
edge they gained during pretraining. However, directly fine-tuning
for citation classification is challenging due to labeled data scarcity,
contextual noise, and spurious keyphrase correlations. In this pa-
per, we present a novel framework, Citss, that adapts the PLMs to
overcome these challenges. Citss introduces self-supervised con-
trastive learning to alleviate data scarcity, and is equipped with two
specialized strategies to obtain the contrastive pairs: sentence-level
cropping, which enhances focus on target citations within long
contexts, and keyphrase perturbation, which mitigates reliance on
specific keyphrases. Compared with previous works that are only
designed for encoder-based PLMs, Citss is carefully developed to
be compatible with both encoder-based PLMs and decoder-based
LLMs, to embrace the benefits of enlarged pretraining. Experi-
ments with three benchmark datasets with both encoder-based
PLMs and decoder-based LLMs demonstrate our superiority com-
pared to the previous state of the art. Our code is available at:
github.com/LITONG99/Citss
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1 Introduction

In scholarly writings, citations act as intellectual bridges, linking
researchers and their ideas across time and disciplines to provide
a connected view of the scientific literature. The analytic study
of citations is the cornerstone for understanding the structure,
evolution, and impact of scientific contributions, attracting growing
attention in recent years [30, 43]. One of the critical focuses is the
citation classification, which identifies and categorizes the authors’
intention of using citations in their writing, empowering a range
of applications, including research evaluation [28, 59, 64], research
trends identification [21, 59], paper recommendation [17, 53, 56],
and scientific texts summarization [8, 25, 57].

For a specific citation, its surrounding textual context is essential
for revealing the underlying intention behind its explicit mention-
ing. Traditional works in citation classification extract informative
features from the contexts and then train supervised classifiers to
assign labels [30]. Some research [28] relies on hand-engineered fea-
tures involving the in-text cue words, metadiscourse, part-of-speech
tags, dependency relationships, etc. Others [11, 54] also bring in
sophisticated deep-learned features such as the word representa-
tions from popular embedding models [14, 47, 50]. Nevertheless,
these methods struggle to capture the semantic nuances between
different citation intentions due to their limited model capacity.
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Recent strides in transformer-based pretrained language models
(PLMs) offer significant opportunities for developing more effec-
tive citation classification systems. Plenty of studies [33, 55] have
demonstrated that PLMs acquired extensive linguistic knowledge
during pretraining, which can be fine-tuned on citation classifi-
cation datasets to discern subtle semantic nuances in citation in-
tentions. They leverage encoder-based PLMs, such as BERT [15],
Longformer [4], SciBERT [3], to encode the context into representa-
tions, which is optimized end-to-end to automatically mine rich se-
mantic information for the task. Despite their efforts in fine-tuning
PLMs on citation data, these methods are limited in addressing
the following unique challenges and only consequent with sub-par
performance.

Challenge 1: Scarcity of labeled citation data. It usually
requires domain-specific knowledge and expertise of annotators to
accurately interpret the scientific texts and assign citation labels.
Hence, existing approaches either call on author self-annotation [34,
52] or employ annotators with relevant academic backgrounds [18,
28]. To date, publicly available citation classification datasets remain
limited to a few thousand samples, which fall short in manifesting
the task-specific textual patterns and restrain the performance of
deep learning systems [30, 48]. With a great number of parameters,
fine-tuning PLMs is more vulnerable confronted data scarcity.

Challenge 2: Defocusing on the target citation. Most existing
methods 33, 41, 55] only work with a highly related but extremely
local context, which is the sentence directly containing the citation,
referred to as the citance [13, 57]. However, the necessary semantic
clues that enable us to determine the type of citation can be far from
the citation and even fragmented in the writing [32]. Although the
larger input window of PLMs makes it possible to include such long-
range dependencies, a broader context can also introduce excessive
irrelevant descriptions, such as mentions of other citations and
general discourses, which are likely to distract the model from
the target citation [5] and even cause the problem of lost-in-the-
middle [37].

Challenge 3: Spurious correlation based on keyphrases.
The scientific keyphrases that are repeatedly mentioned in the
texts, including research subjects, tasks, techniques, etc., are usually
semantically significant for the PLMs, implying that the PLMs can
easily establish spurious correlations from them to the label. For
example, in the case where each citation context in the training
data discusses a unique technique, the model can easily fit on the
dataset by learning a toxic mapping from the keyphrases to the
observed label, resulting in a corrupted model. This problem can
be further intensified by the insufficient training data discussed in
Challenge 1.

In this paper, we address the above challenges and propose
a framework, Citss, that adapts pretrained language models for
Citation classification via self-supervised contrastive learning. For
Challenge 1, our framework is equipped with two transform strate-
gies, sentence-level cropping (SC) and keyphrase perturbation (KP),
which generate contrastive pairs for citation classification in a self-
supervised manner and derive contrastive loss to provide extra
supervision signals for model fine-tuning, alleviating the demand
for annotated citation contexts Given the original sample, each of
the SC and KP strategies not only produces diverse and realistic
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artificial samples serving as its contrastive pairs, but is also delib-
erately aimed to enhance the ability of PLMs in facing Challenge
2 and Challenge 3 correspondingly. Specifically, SC facilitates the
model to focus on the target citation and improve model robustness
against irrelevant noises, and KP helps to mitigate the spurious cor-
relation established between specific keyphrases and the observed
label.

Besides developing our fine-tuning method specialized in elevat-
ing those previously highlighted encoder-based PLMs for citation
classification, we are also ambitious to embrace the currently boom-
ing large language models (LLMs). With the number of parameters
scaling up to billions, the advantages of pretraining are amplified
for these LLMs [6] with decoder-based architecture, making it ap-
pealing to harness their power for citation classification. However,
according to the latest attempts [33, 45], adopting the cutting-edge
LLMs, such as GPT-3.5-turbo, GPT-4, and SciGPT2 [40], for citation
classification in a language generation style still falls behind the
fine-tuned "small" encoder-based PLMs, leaving the question of how
to benefit from LLMs on citation classification open. In this regard,
we establish our framework carefully so it can not only be applied
to the decoder-based architectures of LLMs but also seamlessly
incorporated with the prevalent parameter-efficient fine-tuning
(PEFT) paradigms, such as Lora [63], to further reduce the train-
able parameters in LLMs. With our framework, we successfully
fine-tuned a Llama3-8B backbone on the existing limited citation
classification data and achieved noticeable improvements compared
with baselines.

To summarize, our main contributions are as follows

e We propose a novel self-supervised contrastive learning
framework that is applicable to fine-tuning both encoder-
based PLMs and decoder-based LLMs! for citation classifica-
tion under the scarcity of labeled citation data. To the best of
our knowledge, this is the first work to effectively fine-tune
LLM:s for citation classification.

e We propose a sentence-level cropping strategy that enhances
the ability of PLMs to extract beneficial information for the
target citation from long contexts and defend against irrele-
vant noises.

e We propose a keyphrase perturbation strategy that assists the

PLMs in predicting the citation intentions based on the con-

text logic rather than the occurrence of specific keyphrases.

Experiments on three datasets with both an encoder-based

PLM and a decoder-based LLM demonstrate the consistent

superiority of our framework.

2 Related Work

The analytical study of citations boasts a long scholarly history.
Within this domain, the citation classification task we investi-
gate belongs to natural language processing grounded in citation
context analysis [23]. In the literature on related data mining re-
search, this task has been specifically designated as either "citation
function classification" [18, 28, 30] or "citation intent classifica-
tion" [5, 11, 54, 55, 58]. While some scholarly works posit distinc-
tions between these two concepts, in a sense that the former adopts
an objective perspective centered on how citations serve scholarly

1'We use “PLMs” to collectively refer to both types.
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writing, whereas the latter emphasizes authors’ subjective psycho-
logical processes [44], we observe that their classification schemas
are frequently identical or substantially overlapping. Consequently,
this study refrains from further differentiation between these termi-
nologies and collectively refers to them as "citation classification."

Other tasks that categorize the citations based on the contexts
include: polarity classification [62], which identifies authors’ senti-
ment stance toward cited content; influence classification [31, 64],
which seeks to define the significance of a cited work and recognize
the influential citations; role classification [66], which discerns the
types of resources (code, data, website, media, etc.) provided by the
citation link. These endeavors primarily serve specific application
objectives, and their classification schemas exhibit substantial diver-
gence from the research focus of this study, with marked differences
in problem characteristics.

Additional citation analytical tasks may not necessarily origi-
nate from citation context analysis. For instance, citation predic-
tion [12, 20, 27, 65] aims to forecast potential citations from a can-
didate paper collection for the target document. Likewise, citation
recommendation [22] attempts to recommend scholarly references
to the authors during the paper drafting. These tasks differ more
profoundly from the present research, primarily in that they focus
on the stages where formal academic texts and actual citations may
not yet exist.

3 Preliminary

3.1 Citation Classification

For the target citation i, its citation anchor [1, 2] in the text indi-
cates the occurrence of the citation, which can be in various formats
(numerical, author-with-year, etc.) depending on the writing con-
ventions. The citation context T; is the textual content surrounding
the citation anchor [23]. As shown in Figure 1 (b), we replace the
citation anchor with a special tag (#CITATION_TAG) to distinguish
it from other citations. Given the types of citation intentions C, our
task takes T; as the input and outputs the predicted label y; € C.

3.2 Pretrained Language Models

From a high level, the interaction between our framework and the
backbone PLM can be regarded as a function,

x = M(T,P), (1)
where x is the output vector, T is the citation context, and P is a tex-
tual prompt. P contains possible meta-information of the citation
classification tasks, and defines the format in which T is presented
to the PLM, in order to help the model adapt to the specific task.
The formatted input will be converted into a series of tokens and
forwarded through the stacked transformer layers of the backbone
M. Correspondingly, there will be a series of hidden state vectors
at the last layer, and we retrieve x from them in different ways for
encoder-based PLMs and decoder-based LLMs, depending on their
distinct characteristics of language modeling. (1) The encoder-
based PLM consists of an encoder that is pre-trained with the
blank infill task (masked language modeling). They are the leading
models for numerous supervised text classification tasks [7], among
which the SciBERT [3] is optimized for scientific text and pertinent
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to citation classification. Because these models are skilled at recon-
structing information at the masked input token, we insert a mask
token in the prompt and read out x at the masked position. (2) The
decoder-based LLM, such as GPT-4, Llama3-8B, and Llama3-70B,
achieves groundbreaking performance recently in various natural
language understanding task [6]. Unlike traditional classifiers, these
models usually leverage language generation for text classification
through question-answering or instruction-based paradigms [45].
Architecturally, they employ decoder-only structures pretrained
via next-token prediction objectives [9]. Their output hidden state
in the last position contains information for generating the next
token, and is authentically intended to be decoded into a textual
response. In our framework, instead of decoding, we incorporate
the novel "Explicit-One-word-Limitation" trick (EOL) [26], which
compels the model to condense all contextual understanding into
the immediate next token’s representation by explicitly instructing
it to output exactly one more word in the prompt. We will then
read x out at the last position.

As the interaction with PLMs formulated as Equation 1, our
methodology only cares about how to prompt for the backbone
model and to obtain the x properly but is indifferent to the inner
architectures. Therefore, our framework can work together with
those PEFT methods [19], which select, reparameterize [63], or
insert [24] trainable modules in the PLMs to reduce trainable pa-
rameters while keeping the input and output interface unchanged,
making it possible to efficiently fine-tune the LLMs with the limited
citation data.

3.3 Self-Supervised Contrastive Learning

Contrastive learning [10, 46] generates additional supervision sig-
nals by utilizing the similarity between data samples. It first defines
the contrastive pairs, i.e., positive pairs and negative pairs, then
the contrastive loss forces the positive pairs to be similar in the
latent space, while the negative pairs to be dissimilar, encouraging
the model to capture invariant information between positive pairs
as well as distinguishable information between individual nega-
tive pairs. There are many ways to construct contrastive pairs. In
a self-supervised manner [61], carefully designed strategies can
be employed to make modifications on the original sample T; and
transform it into its positive pair T;. Other transformed samples in
the batch, {7~"j¢,~| J € B}, will serve as the negative pairs. With z;
and %; denoting the representations of T; and T; in the latent space,

the classic InfoNCE loss [46] for the batch can be written as
1
LInfoNCE - lo
P

exp sim(zi, Z;)

Yjesexpsim(zi, Zj)

@)

where sim(g, k) = q"k/7 is the similarity metric and  is the tem-
perature hyperparameter that adjusts the strength of contrast.

In order to benefit from the contrastive learning for citation clas-
sification, it is essential to develop proper transformation strategies
tailored to the task. On the one hand, indicative information about
the citation intention contained in the original sample is supposed
to be preserved after the transformation. On the other hand, the
transformation needs to introduce sufficient input diversity to effec-
tively guide the model to gain discriminative ability in the desired
aspects.
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(c) Keyphrase Perturbation (KP)
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Figure 1: Overview of Citss: (a) exhibits the architecture and workflow. (b) shows an example of sentence-level cropping. (c)
shows an example of the keyphrase perturbation. The underlined text is the keyphrases and the shaded text is the word for

synonym replacement.

4 Methodology

4.1 Framework Architecture

An overview of Citss is depicted in Figure 1 (a). In this section,
we will first describe the framework architecture to show how to
obtain context representations and create extra supervision signals
by contrastive learning. Then, we will discuss the sentence-level
cropping strategy and explain why it helps the model to focus on the
target citation against contextual noise. Next, we will elaborate on
the definition and algorithm of the keyphrase perturbation strategy
and how it helps to mitigate the spurious correlations. Finally, we
derived the complexity of our framework.

Given the context T; of sample i, each of the two strategies,
sentence-level cropping (SC) and keyphrase perturbation (KP), will
modify it into the corresponding transformed sample T;. T; and T;
are input into the PLM separately to obtain the hidden state vector,
x;i = M(T;,P), and %; = M(T;, P).

The output vectors directly from the PLM comply with the intrin-
sic distribution of the hidden states, thereby limiting in characteriz-
ing task-specific information for citation classification. Therefore,
we introduce a lightweight MLP adapter module to map them into
task-specific context representation. The adapter is also able to
perform dimension reduction, so that the subsequent modules can
compute the similarity between contrastive pairs in an appropriate
latent space. Formally,

f(x) = WaLN(GeLU(Wix + b1)) + ba, 3)
where LN(-) is the layer normalization, GeLU(-) is the activation
function, and Wy, Wa, b1, by are learnable parameters. The represen-

tation of the original context z; = f(x;) is sent to a linear classifier
for prediction, and the multi-class classification loss is calculated.

©
®)

yi = g(zi) = softmax(Waz; + b3),
LCLS = Z CrossEntropy(y;, 9i),
i€B
where B is the batch index set and W5, b3 are learnable parameters.
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As for the representations of transformed contexts z; = f(X;),
they are only used for contrastive learning. Under each strategy,
we compute the the InfoNCE loss L5€ or LKP | 5o the overall opti-
mization target is

L =L 4 ,15C 4+ 1,1KP 4 1P, (6)

where A1, A2, w are hyperparameters controlling the magnitude
of the loss terms, and LP™ is the weight decay penalty loss [39]
for overfitting prevention. It is worth mentioning that the trans-
formations and contrastive learning are only conducted for the
fine-tuning stage to aid parameter learning. During inference, we
collect the citation context and forward it sequentially through
modules for prediction.

4.2 Sentence-Level Cropping

The sentence-level cropping helps the model focus on the target
citation with the presence of contextual noises, and its intuition
resembles image cropping [10, 16] in computer vision, which guides
the model to attend on the target object against background noises.
In the textual context, we crop on the sentence level because a
sentence is a unit to convey a complete thought in natural language.

As illustrated in Figure 1 (b), SC splits the long context into a
sequence of sentences. In every epoch, it randomly crops a subse-
quence with the same citance but different context ranges. Minimiz-
ing the contrastive loss imposes the representation to be correlated
with the target citation regardless of the randomly allocated input
range, thus encouraging the model to focus on the target citation
within the long input. Rather than only containing the citance, each
positive pair may also randomly overlap on a portion of surrounding
sentences with the original sample, so the representation imme-
diately after this optimization step tends to encode such random
contextual information. Supposing the information contributes to
the correct prediction, it is likely to lead to better classification loss
in the following steps, and such changes will be retained during op-
timization across epochs. Otherwise, if the information disturbs the
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correct prediction, the instant influence of this step will be counter-
acted by other steps after epochs. Therefore, the SC contrastive loss
across epochs assists the model in dynamically extracting valuable
contextual information that enhances the prediction while get rid
of the noises.

Denoting the citance for sample i as s?, the input of Citss is
an enlarged context T; = (si_l, si_l,s?,sil, sf) representing a
sequence of 2] + 1 sentences where [ is a hyperparameter defining
the maximum one-side range. SC produces contexts with perturbed
ranges,

SC(T;) = ({57, ....s%, ..., s¥)Vb,0,— < b < 0 < v < [}/{T;}.

Each transformed sample is comprised of the citance, b preceding
sentences, and v succeeding sentences. SC can produce at most
(1+1)? —1 transformed samples and the minimum resultant context
is (s?). Among them, we repeatedly iterate to obtain the positive
pair for the current epoch e, flsec ~ SC(T;). With temperature
hyperparameter 71, the contrastive loss is
s 1 exp(z] 2y /71)
=—— og ~ .
|B| 3 Zjeg; exp(z;rzif/rl)

™

4.3 Keyphrase Perturbation

The intuition of the keyphrase perturbation strategy is that modify-
ing the scientific keyphrases in the context usually does not affect
the citation intention. The scientific keyphrases are associated with
detailed topics, while the residue of the sentence organizes the
knowledge and outlines the writing logic, playing distinct roles in
scientific writing. Hence, the residue is usually more dominant in
deciding the citation intention, and an example is as follows.

Example 4.1. Here are two texts, S1: "The first work to do this
with topic models is [1]", and S2: "We use topic models [1] to find
hidden semantic structures in documents." They are similar if we
consider general semantics because they are both written around
the technique "topic models". However, for citation classification,
the label of S1 is "BACKGROUND" while the label of S2 is "USE",
since they express totally distinct logic regarding the intention of
the target citation. Further, consider S3: "The first work to do this
with data augmentation is [1].", which is an artificial text created
by altering the technique in S1. 83 is quite plausible to appear in a
paper on the topic "data augmentation” and is very likely to belong
to the same citation label "BACKGROUND" as S1.

As illustrated in Figure 1 (c), KP recognizes and changes the
scientific keyphrases within the original context to construct its
positive pairs with the same residue. Through subsequent con-
trastive learning, this encourages the representation to model the
logical semantics of sentence residue instead of specific keyphrase
semantics.

We first standardize the definition of keyphrases in our research
as the scientific typed keyphrases (STKs) [35], which are the entities
that have indispensable semantic meaning in the scientific domain,
including specific proper nouns such as "BERT" and significant
words or phrases in the text, such as "citation classification". Akin to
the named entities [49] in the general domain, which can be typed as
person, organization, and location, STKs also come with types, such
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as task, technique, materials, and concept. In this work, we will use
the terms keyphrase and STKs interchangeably. There are several
tools and methods for STK extraction under the supervised setting
or few-shot setting [35]. Here we consider the simple one-shot
setting so as to reduce manual efforts to label for this intermediate
task, and leverage the instructional generation to extract the STKs
with LLMs. This training-free approach performs well even under
the one-shot setting, thanks to the great generalization ability of
LLMs.

Formally, for the training set D, let K; be the STKs appeared in
T; and K = ;e p Ki be the set of observed STKs. KP perturbs each
k € K; atapredefined probability 5. We consider the following three
different operations to perturb k, which will be invoked periodically
at different epochs.

o Global replacement. The mention of k is replaced by another
k' € K/{k}. We additionally require k and k’ to have the
same type because different types of STKs tend to function
differently in the context.

Local replacement. The mention of k is replaced by k’ €

K;/{k} of the same type. It is a localized version of Gr that

only allows replacement between keyphrases occurring in

the same context, ensuring k” and k” are semantically rele-
vant to each other.

e Abstraction. The mention of k is replaced by its type name,
such as "Task-1" and "Technique-2". We add the extra nu-
merical IDs to distinguish between perturbed keyphrases
of the same type. This operation masks out k by making it
anonymous without introducing new keyphrases.

After the perturbing STKs, KP also performs synonym replace-
ment [60] on the residue of the context to introduce semantic di-
versity in the general domain. Particularly, each word except for
the stop words is perturbed at predefined probability y and we use
the WordNet [42] synonym base SN to query for the synonyms.
This step introduces general semantic differences between the pos-
itive pairs, in case there are few or no STKs in the context. Let the
scheduled perturbation operation for epoch e is Op,, € {Gr, Lr, Ab},
the overall KP algorithm to generate Tfep is in Algorithm 1. With
temperature hyperparameter 77, the contrastive loss for epoch e is

K Pl e /72 ®)
T8I £ Y g exp(2 2R )
ieB jeB EXPz; 25, [ T2

4.4 Complexity Analysis

Denote the number of trainable parameters in M as Ny, the hid-
den state size of M as dy = |x|, the model size as d, = |z, the
intermediate embedding size of the adapter as d, C = |C]| is the
size of label set, the number of trainable parameters of Citss is
No+d(dy +d;) +d+d, + C(d; +1). With C <« d; and d,; < dy,
the number of parameters is in O(Ny + 2d - dy). Additionally, our
method can work seamlessly with prevalent parameter-efficient
fine-tuning methods for LLM, such as Lora, which wraps M and
reduces Ny without changing its interface with our framework.
As for time complexity, since SC only shortens the T; and KP per-
forms replacement between synonyms or STKs, the length of T
after tokenization resembles that of T;, implying similar forwarding
complexity. Assume the PLM forwarding complexity per sample is
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Algorithm 1 Keyphrase perturbation for epoch e

Input: K;, T;, Op,, B, y, synonym base SN, global STK base K
v TKP T,
2: for k € K; do
3: Sample indicator g ~ Bernoulli(f)
if ¢ = 1 then
Perturb k in f}{gp with Op,,
end if
end for

. Split T; into word list ‘W and eliminate the stop words.
: for w € ‘W and w not in any k € K; do

10: if w has synonyms in SN then

11 Sample indicator g ~ Bernoulli(y)
12: if ¢ =1 then

13: Sample w’ from SN [w]

14: Replace w in TXP with w’

15: end if ,

16: end if

17: end for

. TKP
Output: Tl o

O(|M]), the amortized complexity to perform contrastive learning
amongst the batch is O(|8B] - d2), hence the training complexity of
our framework per sample is O(3| M |+6d-dx+2|B|-d?) =~ O(3|M|)
and the inference complexity is O(|M| + 2d - dy) = O(|M|). Here
the time for for SC and KP can be neglected, because with I’ be the
length of T;, it takes O(1’) time to scan the context and generate a
transformed sample, while | M| is generally in O(I’2).

5 Experiments

We conduct experiments to investigate the proposed framework
and answer the following research questions.

e RQ1: How is the overall performance of our framework?

o RQ2: How effective is the proposed SC strategy in extracting
contextual information and defending the irrelevant noise?

e RQ3: How effective and robust is the proposed KP strategy?

5.1 Setup

5.1.1 Datasets. We use two domain-specific datasets and a mul-
tidisciplinary dataset, and each dataset consists of 6 categories as
labels. For ACL-ARC and ACT2, we use the original test split, and
reserve 15% of the training data as the validation split since the
release does not include a validation split. For FOCAL, we use the
original split. The statistics are summarized in Table 1.

e ACL-ARC [32] is in the domain of computational linguistics,
which is initially annotated and released by Jurgens et al. [28]
and processed for citation classification by Cohan et al. [11].
Although the original version is used by several later works,
it is pointed out that there are duplicates, data leakage, and
incomplete sentences, which may be caused by limited OCR
techniques in the early years. We use the cleaned version by
Kunnath et al. [32].

FOCAL [18] is from the astrophysical domain. The original
labels seem to further divide the ’Compare/Contrast’ into 3
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fine-grained classes by sentiment (similarities, differences,
neutrality). We regard them as one class to align with other
datasets.

e ACT?2 [34, 51] is a highly heterogeneous multidisciplinary
dataset that is challenging for existing citation classification
methods, comprised of samples from over 20 domains in-
cluding medicine, psychology, computer science, business,
economics, etc.

5.1.2  Backbones. For encoder-based PLMs, we experiment with
the SciBERT [3], a BERT-based model pretrained on papers from the
corpus of Semantic Scholar 2 and owns a vocabulary that is built to
best match the training corpus. SciBERT results in state-of-the-art
performance on a wide range of scientific domain NLP tasks and
is highlighted by the previous works in citation classification [33,
36, 41]. Following the experimental results of previous work [33],
we use a null template [38] that does not include any task-specific
patterns.
P1: {T}. [MASK].

For decoder-based LLMs, we experiment with the instruction-tuned
Llama3-8B since it is one of the leading open-source LLMs among
models of similar size. Specifically, we use the bfloat16 version of
instruction-tuned Llama3-8B 3 and further apply the Low-Rank
Adaptation [63] on M to reduce trainable parameters. As for the
prompt, we write a task description suggested by previous work [36]
to elevate the quality of task-specific output from the LLM. The
overall prompt is as follows.

P2: You are provided a context from a paper P citing a
paper Q, with the specific citation marked as the "#CI-
TATION_TAG" tag. Please analyze the citation function
of the context which represents the author’s motive or
purpose for citing Q. Here is the context:“{T}". Only
output one word as the answer:

Our motivation for experiments with the LLMs is to offer a potential
way to take advantage of the LLMs for citation classification, as
well as to shed light on the possible performance. We did not opt for
the larger models because the task is inherently in data shortage,
which may not be affordable to blindly upgrade the model scales.
For instance, we found finetuning 21M to 42M parameters out of
the 8B is already a sweet point with maximal performance.

5.1.3 Baselines. We first introduce the best-performed feature-
based baseline that does not include finetuning of any PLMs. (1) Scaf-
fold [11]: It concatenates the Glove and EIMo embeddings of the
words in the context as features and employs a BILSTM-Attention
model to aggregate among them. It further designs two auxiliary
tasks, predicting whether a sentence contains a citation and pre-
dicting the section name, to handle the data scarcity.

We then introduce 3 baselines that are dedicated to finetune
encoder-based PLM. (2) TRL [55]: It is a multi-task learning frame-
work that uses the labeled data from auxiliary datasets to aid the
fine-tuning on the primary dataset. A task relation learning proce-
dure automatically computes the task weights. In our experiments,
we use ACL-ARC and FOCAL as the auxiliary datasets for each
other; for ACT2, neither of the other datasets is helpful so we only

wawAsemanticscholaerrg
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Table 1: Dataset statistics.

Splits Citation Types (%)
Dataset #All  #Train #Validation #Test | Background Compare/Contrast Uses Motivation Extend Future
ACL-ARC | 1,929 1,399 246 284 51.3 18.1 3.7 3.6 4.6 18.7
FOCAL 4,166 2,617 660 889 41.2 24.7 0.3 0.9 5.8 27.1
ACT2 3,000 2,550 450 1,000 54.8 12.2 5.8 1.9 9.6 15.8

use itself. (3) IREL [41]: It is the winning system in the 2021 SDP
Citation Context Classification Shared task [31], which fine-tunes
SciBERT and a linear classifier end-to-end with a class-balanced
classification loss [29]. (4) PET [33]: It explored several closed-
form prompts to fine-tune SciBERT in the Pattern Explicit Tuning
style [2]. It reports P1 as one of the best prompts across different
datasets, resulting in previously state-of-the-art performance.

For the decoder-based LLMs, we implement 2 straightforward
baselines as there are no previous works dedicated to tuning them
for citation classification. (5) IFP [33]: It is a training-free method
that adopts the model for text classification via instruction-following
prompting and searches for the textual label from the decoded re-
sponse. The prompt is listed in the Appendix. (6) LoRA [63]: It is
a PEFT technique introducing a small number of trainable rank
decomposition matrices to adapt the pretrained LLMs. We use P2
in this baseline.

5.1.4 Implementations. We implement our framework and all LLM
baselines with the python transformer library. For other baselines,
we use their authorized implementation. We use a Llama3-70B
model for the STKs extraction and the detials are in the Appen-
dix. In all experiments, the context range /=3, the weight decay
coefficient ©=0.01, the learning rate is 2>, the synoynym replace-
ment ratio y=0.1. In the LoRA component, r=16 for ACL-ARC and
FOCAL, r = 8 for ACT2, and a=16 for all settings. For ACL-ARC,
the final hyperparamers are d=1024, d,=256, 11=1, 12=1, |B|=4 for
both backbones; 11=0.2, 0.1, A12=0.1, 0.2, $=0.6, 0.4, for SciBERT and
Llama3-8B. For FOCAL, the final hyperparamers are 11=0.2, 12=0.1,
71=5, 12=1 for both backbones; d=256, 1024, d,=128, 256, |B|=16,
4, f=0.6, 0.7, for SciBERT and Llama3-8B. For ACT2, the final hy-
perparamers are A1=0.1, 71=0.1; A2=0.2, 72=10 for both backbones;
d=256,128,d,=128, 64, |B|=16, 4, =0.3, 0.4 for SciBERT and Llama3-
8B. The reported performance under each setting is averaged over
3 runs. At each run, the model is trained for at most 10 epochs
with early stopping based on the summation of Macro-f1 and Accu-
racy computed based on the validation set. All the experiments are
conducted on a server equipped with Intel(R) Xeon(R) Gold 6240
CPU and two NVIDIA A800 (80GB Memory). More implementation
details are summarized in the Appendix.

5.2 RQ1: Overall Comparison

5.2.1 Classification Performance. The overall comparison is re-
ported in Table 2. Macro-f1 represents the average performance
on each class since the citation types are unevenly distributed as
in Table 1. Based on the results, we have the following four main
observations. (1) Citss achieves the state-of-the-art performance,
outperforming existing methods on 5 out of 6 metrics when using
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SciBERT and on all metrics when using the Llama3-8B backbone.
This highlights the versatility and effectiveness of our approach
with both encoder-based PLMs and decoder-based LLMs. On ACT2,
it is hard to achieve high scores on both metrics due to the difficul-
ties in predicting its minority classes. IREL prioritizes Macro-F1 by
weighting minority classes more heavily, compared to which our
framework strikes a better balance and achieves significantly higher
accuracy than IREL without substantial loss in Macro-F1. (2) Turn-
ing to the experiments with SciBERT, PET achieves the second-best
overall performance. The success of both our method and PET,
which leverage prompting strategies, highlights the important role
of task-specific patterns in adapting PLMs for citation classification.
TRL attains the second-best accuracy on FOCAL and ACT?2, albeit
for different reasons. On FOCAL, its performance validates the
effectiveness of supplementing labeled data from the auxiliary ACL-
ARC dataset. However, it becomes a dummy classifier on ACT2 that
overwhelmingly predicts the majority class, resulting in the worst
Macro-F1 score. (3) In experiments utilizing decoder-based LLMs,
the fine-tuning methods essentially outperform the IFP. This supe-
riority extends even when comparing fine-tuning to IFP using the
significantly larger Instruction-tuned 70B model. This reflects that
there is still a large gap between the generation approach, which
relies solely on task descriptions and examples, and the data-driven
fine-tuning approaches of cutting-edge LLMs for the complex text
classification task of citation classification. (4) With Citss, Llama3-
8B outperforms SciBERT on ACL-ARC, achieving significantly bet-
ter results. While the performance gap between Llama3-8B and
SciBERT narrows on Focal and ACT?2, this suggests that Focal and
ACT2 may benefit more from scientific text-specialized pretraining
of SciBERT. ACL-ARC appears to leverage Llama3-8B’s larger scale
pretraining on general domain knowledge.

5.2.2  Efficiency. We now detail the absolute time costs under our
experiment environments. (1) For Citss, with SciBERT, it takes 17
to 23 minutes for training and 3 to 12 seconds for inference on
the entire test set. With Llama3-8B and LoRA, it takes around 89,
160, and 131 minutes for training and 12, 71, and 53 seconds for
inference on ACL-ARC, FOCAL, and ACT datasets, respectively.
The time for producing transformed samples with KP and SC is
negligible in comparison. (2) Among the baselines, the feature-
based Scaffold is the most efficient, requiring only a few minutes
for training and seconds for inference. However, this efficiency
comes at the cost of significant manual effort in data preprocessing,
particularly in collecting and cleaning the section name feature. (3)
All SciBERT-based baselines share similar inference times. As for
the training, IREL and PET require similar training time, which is
around 6 to 12 minutes. TRL involves augmenting the training data
and determining auxiliary task weights, resulting in a comparable
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Table 2: Overall performance comparison. The best score is bolded and the second-best score is underlined for each backbone.
And * denotes significant improvements (measured by t-test, p<0.05) compared with other baselines with the same backbone.

ACL-ARC FOCAL ACT2
Method Backbone Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy
Scaffold ‘ NA 0.496 = 0.021 0.649 £0.012  0.145+0.041  0.447 £0.133 0.146%0.006 0.363+0.017
IREL SciBERT 0.614 + 0.037 0.721 £0.025  0.580 +0.086  0.742 + 0.007 0.262+0.012 0.468+0.028
TRL SciBERT 0.476 = 0.024 0.610 £0.007  0.604 = 0.009  0.756 + 0.009 0.118+0.001 0.544+0.000
PET SciBERT 0.616 + 0.022 0.723 £ 0.019  0.641 £0.044  0.750 £ 0.008  0.258+ 0.018 0.537+0.020
Citss SciBERT 0.665" +0.018  0.743 = 0.006 0.679 +0.023 0.777" +£0.005  0.254+0.012  0.563*+0.009
IFP Llama3-8B 0.422 0.575 0.243 0.398 0.213 0.446
LoRA Llama3-8B-bfloat16 | 0.670 + 0.050 0.745 £ 0.028  0.670 + 0.035 0.757+0.001 0.242 +0.034  0.529 + 0.014
Citss + LoRA | Llama3-8B-bfloat16 | 0.744 +0.010 0.819" +0.007 0.682 = 0.024 0.768" +0.001 0.266 + 0.006 0.549 + 0.017
IFP ‘ Llama3-70B ‘ 0.569 0.701 0.430 0.623 0.242 0.545

Table 3: Ablation Study by disabling the contrastive learning loss term in Citss. Imp. (%) shows the average improvements of

both metrics. For Llama3-8B, we use the same LoRA setting and bfloat16 version.

ACL-ARC FOCAL ACT2

SciBERT Macro-f1 Accuracy  Imp.(%) Macro-f1 Accuracy  Imp.(%) Macro-f1 Accuracy  Imp.(%)
M, A2 =0 | 0.616 £0.012 0.714 £ 0.022 - 0.641 £ 0.029  0.742 + 0.004 - 0.262 £ 0.016  0.539 + 0.021 -
A2 =0 0.660 +£0.025 0.745 £+ 0.032 5.7 0.666 +£0.029 0.762 + 0.006 3.3 0.246 £0.036  0.558 £ 0.008 0.3
A1=0 0.646 +£0.032 0.730 £0.017 35 0.654 +£0.004 0.764 £ 0.009 2.5 0.260 £0.003  0.549 £ 0.017 0.9
Llama3-8B ‘ Macro-f1 Accuracy  Imp.(%) Macro-f1 Accuracy  Imp.(%) Macro-f1 Accuracy  Imp.(%)
A1,A2=0 0.729 £ 0.007  0.799 £ 0.003 - 0.673 £0.008 0.762 £ 0.003 - 0.227 £0.006 0.544 £ 0.017 -
A2 =0 0.736 £0.021 0.805 +0.013 0.9 0.681 £0.009 0.769 £ 0.004 1.0 0.248 £0.016 0.542 £ 0.016 2.5
A1 =0 0.739 £0.008 0.804 +0.011 1.0 0.675 £ 0.005 0.766 + 0.004 0.4 0.236 £0.009 0.556 +£0.019 2.8
o7 ACL-ARC FOCAL 0803 ACT2 06 datasets and backbone models, using a single strategy is better than

III ﬁ B B ﬁ 1 rao no strategy. Combining with the overall performance in Table 2,

| Hmll n EE gll we can conclude that simultaneously using SC and KP further
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Figure 2: Ablation study of SC with different T;. The x-axis is
I, and | = 0 corresponds to the citance.

overall training time to Citss with SciBERT. (4) For LLM baselines,
while IFP is training-free, its inference speed is significantly slower
due to the sequential decoding, requiring roughly 5 and 15 seconds
per sample for Llama3-8B and Llama3-70B, respectively. This limits
its practical applicability. LoRA fine-tuning, on the other hand, takes
40 to 92 minutes for training and 11 to 52 seconds for inference.

5.3 RQ2: Investigation of Sentence-Level
Cropping

We first conduct the ablation study by disabling the contrastive

learning loss term in Citss, and list the result in Table 3. With all
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outperforms a single strategy.

Further, we adjust [ in T; = (si_l, sf) to input context with
different ranges to the SciBERT, evaluating the performance both
with and without SC in Figure 2. On ACL-ARC, | = 0 is a decent
input range with the highest accuracy, just as the setting of previous
studies [33, 41, 55]. Increasing | without SC leads to performance
degradation, suggesting that the surrounding sentences introduce
excessive noise that overrides beneficial information. For FOCAL
and ACT2, expanding the context window generally improves per-
formance. This may indicate more citation-relevant long-range de-
pendencies and less noise compared to ACL-ARC, making a broader
context more advantageous. Across all datasets, SC consistently
improves both metrics for [ = 1, 2, 3, and outperforms I = 0 signif-
icantly. This validates the efficacy of SC in mitigating in-context
noise and leveraging broader contexts effectively.

5.4 RQ3: Investigation of Keyphrase
Perturbation

We analyze the impact of the keyphrase perturbation ratio f and
synonym replacement ratio y on performance, reporting Macro-F1



Adapting Pretrained Language Models for Citation Classification via Self-Supervised Contrastive Learning

ACL-ARC FOCAL ACT2

0.70 027

0.65 1

0.65 1 0.26

0.60 1 0.254

0.60 { 0.55

0.45 1
————————— 0.
0.0 0.2 0.4 0.6 0.8 1.0

0.24 4

0.50
0.55 0.234

— T — T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Performance with varying f (x-axis) and y. The
dashed line is the performance without KP.

ACL-ARC FOCAL ACT2
wwt | 08 0.6
N il | os i
‘s i ) |
ZC BER N T T S 7/
R ] - N 0.4
4 M - \
‘ N, | os ) | q
\ NAIEE ||
Ny N/ e
\ 0.5 /|02 / N
Macro-f1 Acc. Macro-f1 Acc. Macro-f1 Acc.
"""" Mixed N Gr, SciBERT @Z Lr, SciBERT I Ab, SciBERT
N Gr.Llama3-8B / Lr. Llama3-8B Ab. Llama3-8B

Figure 4: Performance with perturbation operation Op.

scores with SciBERT in Figure 3 (with a similar pattern for Accu-
racy). Increasing y initially improves performance within a certain
range, but exceeding an optimal value leads to degradation. This
suggests that introducing general domain diversity to scientific writ-
ing is beneficial to a point. On ACL-ARC and FOCAL, performance
peaks as f increases under an optimal y, indicating that gradu-
ally increasing the differentiation of keyphrases between positive
samples enhances performance. But entirely different keywords
between positive pairs may pose challenges for model optimization.
On ACT?2, varying f has a less significant effect with the optimal
Y, possibly due to its high heterogeneity, where keyphrases are
markedly dissimilar.

We also compare different proposed perturbation operations in
Figure 4 by evaluating performance under single and mixed modes.
In most cases, using the mixed operations achieves optimal or near-
optimal results, facilitating the implementation of the framework.

Finally, we analyzed the extracted STKs, beginning with a quanti-
tative assessment. Across the ACL-ARC, FOCAL, and ACT?2 datasets,
we obtained 6801, 21244, and 13731 STKSs, respectively. Subsequently,
we conducted a qualitative analysis by randomly sampling 20 con-
texts from ACL-ARC. Human annotators identified 174 STKs in
these samples, while the LLM extracted 199. The quality of these
extractions is further detailed in Figure 5. The main differences be-
tween the LLM-mined and manually annotated STKs reside in two
aspects, neither of which poses a dangerous risk to our framework.
First, the LLM exhibits a more lenient criterion for STK identifica-
tion, resulting in a recall ranging from 0.667 to 1, which usually
exceeds its precision. For example, the LLM identified "generating
an initial description" as a Process, while human annotators did
not acknowledge it as an STK. Introducing perturbations based on
such high-order semantic elements, which are not strictly STKs, is
unlikely to severely compromise the validity of the KP algorithm.
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Figure 5: Extracted STKs estimated by humans.

Indeed, exploring alternative transformation strategies based on
perturbing these higher-order elements, or even paraphrasing the
context entirely, presents a promising avenue for future research.
Second, the LLM demonstrated a tendency to categorize a larger pro-
portion of STKs under the "Concept" category, which encompasses
STKs not readily classified into other defined types. In contrast, hu-
man annotators were more adept at identifying specific STK types.
Fortunately, the KP algorithm can perturb the STK in the original
context regardless of its assigned type. The type-agnostic precision
and recall, at 76 and 87%, are high, lending strong support to our
KP strategy.

6 Conclusion

We introduce a framework, Citss, to fine-tune PLMs for citation
classification via self-supervised contrastive learning. Our frame-
work employs sentence-level cropping and keyphrase perturbation
strategies to construct contrastive pairs without the need for la-
bels. Taking the citation context as input, our framework acquires
task-specific representation from the output of PLMs and performs
contrastive learning together with the supervised loss over the
labeled data. Experiments with three benchmark datasets demon-
strated the superiority of our framework.

Acknowledgments

Lei Chen’s work is partially supported by National Key Research
and Development Program of China Grant No. 2023YFF0725100,
National Science Foundation of China (NSFC) under Grant No.
U22B2060, Guangdong-Hong Kong Technology Innovation Joint
Funding Scheme Project No. 2024A0505040012, the Hong Kong RGC
GRF Project 16213620, RIF Project R6020-19, AOE Project AoE/E-
603/18, Theme-based project TRS T41-603/20R, CRF Project C2004-
21G, Guangdong Province Science and Technology Plan Project
2023A0505030011, Guangzhou municipality big data intelligence
key lab, 2023A03J0012, Hong Kong ITC ITF grants MHX/078/21 and
PRP/004/22FX, Zhujiang scholar program 2021JC02X170, Microsoft
Research Asia Collaborative Research Grant, HKUST-Webank joint
research lab and 2023 HKUST Shenzhen-Hong Kong Collaborative
Innovation Institute Green Sustainability Special Fund, from Shui
On Xintiandi and the InnoSpace GBA. Yongqi Zhang’s work is
supported by Guangdong Basic and Applied Basic Research Foun-
dation 2025A1515010304, and Guangzhou Science and Technology
Planning Project 2025A03]J4491.



KDD ’25, August 3-7, 2025, Toronto, ON, Canada

References

(1]
(2]

[11]

[12]

[15]

[16]

[17

(18]

[19]

[20

[21]

[22]

[23

[24]

Riaz Ahmad and Muhammad Tanvir Afzal. 2018. CAD: An algorithm for citation-
anchors detection in research papers. Scientometrics 117 (2018), 1405-1423.
Riaz Ahmad, Muhammad Tanvir Afzal, and Muhammad Abdul Qadir. 2017. Pat-
tern analysis of citation-anchors in citing documents for accurate identification
of in-text citations. IEEE Access 5 (2017), 5819-5828.

1z Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A Pretrained Language
Model for Scientific Text. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). 3615-3620.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

Dan Berrebbi, Nicolas Huynh, and Oana Balalau. 2022. GraphCite: citation intent
classification in scientific publications via graph embeddings. In Companion
Proceedings of the Web Conference 2022. 779-783.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Martin Juan José Bucher and Marco Martini. 2024. Fine-Tuned’Small’LLMs (Still)
Significantly Outperform Zero-Shot Generative AI Models in Text Classification.
arXiv preprint arXiv:2406.08660 (2024).

Jingqiang Chen and Hai Zhuge. 2019. Automatic generation of related work
through summarizing citations. Concurrency and Computation: Practice and
Experience 31, 3 (2019), e4261.

Liang Chen, Zekun Wang, Shuhuai Ren, Lei Li, Haozhe Zhao, Yunshui Li, Zefan
Cai, Hongcheng Guo, Lei Zhang, Yizhe Xiong, et al. 2024. Next Token Prediction
Towards Multimodal Intelligence: A Comprehensive Survey. arXiv preprint
arXiv:2412.18619 (2024).

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597-1607.

Arman Cohan, Waleed Ammar, Madeleine van Zuylen, and Field Cady. 2019.
Structural Scaffolds for Citation Intent Classification in Scientific Publications. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 3586—3596.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel S Weld.
2020. SPECTER: Document-level Representation Learning using Citation-
informed Transformers. In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics. 2270-2282.

Arman Cohan and Nazli Goharian. 2018. Scientific document summarization
via citation contextualization and scientific discourse. International Journal on
Digital Libraries 19 (2018), 287-303.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine
Bordes. 2018. Supervised Learning of Universal Sentence Representations from
Natural Language Inference Data. arXiv:1705.02364 [cs.CL] https://arxiv.org/
abs/1705.02364

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805
Terrance DeVries. 2017. Improved Regularization of Convolutional Neural Net-
works with Cutout. arXiv preprint arXiv:1708.04552 (2017).

Jiayuan Ding, Tong Xiang, Zijing Ou, Wangyang Zuo, Ruihui Zhao, Chenhua Lin,
Yefeng Zheng, and Bang Liu. 2022. Tell me how to survey: literature review made
simple with automatic reading path generation. In 2022 IEEE 38th international
conference on data engineering (ICDE). IEEE, 3426-3438.

Felix Grezes, Thomas Allen, Tirthankar Ghosal, and Sergi Blanco-Cuaresma. 2023.
Function of citation in astrophysics literature (focal): Findings of the shared task.
In Proceedings of the Second Workshop on Information Extraction from Scientific
Publications. 143-147.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. 2024.
Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey.
arXiv:2403.14608 [cs.LG] https://arxiv.org/abs/2403.14608

Qianyue Hao, Jingyang Fan, Fengli Xu, Jian Yuan, and Yong Li. 2024. HLM-Cite:
Hybrid Language Model Workflow for Text-based Scientific Citation Prediction.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems.
Saeed-Ul Hassan, Iqra Safder, Anam Akram, and Faisal Kamiran. 2018. A novel
machine-learning approach to measuring scientific knowledge flows using cita-
tion context analysis. Scientometrics 116 (2018), 973-996.

Qi He, Jian Pei, Daniel Kifer, Prasenjit Mitra, and Lee Giles. 2010. Context-aware
citation recommendation. In Proceedings of the 19th international conference on
World wide web. 421-430.

Myriam Hernandez-Alvarez and José M Gomez. 2016. Survey about citation
context analysis: Tasks, techniques, and resources. Natural Language Engineering
22, 3 (2016), 327-349

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.

1550

[25

[26

[27

™
&,

[29]

[30

(31

[32

[33

[34

[35

[38

[39

[40

[41

[42

[43]

S
&

[45

[46

[47

Tong Li, Jiachuan Wang, Yongqi Zhang, Shuangyin Li, and Lei Chen

Parameter-Efficient Transfer Learning for NLP. arXiv:1902.00751 [cs.LG] https:
//arxiv.org/abs/1902.00751

Rahul Jha, Amjad-Abu Jbara, Vahed Qazvinian, and Dragomir R Radev. 2017.
NLP-driven citation analysis for scientometrics. Natural Language Engineering
23,1 (2017), 93-130.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang.
2023. Scaling sentence embeddings with large language models. arXiv preprint
arXiv:2307.16645 (2023).

Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, Xinyang Zhang, Qi Zhu, and
Jiawei Han. 2023. PATTON: Language Model Pretraining on Text-Rich Networks.
In 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023.
Association for Computational Linguistics (ACL), 7005-7020.

David Jurgens, Srijan Kumar, Raine Hoover, Dan McFarland, and Dan Jurafsky.
2018. Measuring the evolution of a scientific field through citation frames.
Transactions of the Association for Computational Linguistics 6 (2018), 391-406.
Gary King and Langche Zeng. 2001. Logistic regression in rare events data.
Political analysis 9, 2 (2001), 137-163.

Suchetha N Kunnath, Drahomira Herrmannova, David Pride, and Petr Knoth.
2021. A meta-analysis of semantic classification of citations. Quantitative science
studies 2, 4 (2021), 1170-1215.

Suchetha N Kunnath, David Pride, Drahomira Herrmannova, and Petr Knoth.
2021. Overview of the 2021 SDP 3C citation context classification shared task.
Association for Computational Linguistics.

Suchetha Nambanoor Kunnath, David Pride, and Petr Knoth. 2022. Dynamic
Context Extraction for Citation Classification. In Proceedings of the 2nd Conference
of the Asia-Pacific Chapter of the Association for Computational Linguistics and
the 12th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). 539-549.

Suchetha N Kunnath, David Pride, and Petr Knoth. 2023. Prompting strategies
for citation classification. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management. 1127-1137.

Suchetha Nambanoor Kunnath, Valentin Stauber, Ronin Wu, David Pride, Vik-
tor Botev, and Petr Knoth. 2022. ACT2: A multi-disciplinary semi-structured
dataset for importance and purpose classification of citations. In Proceedings of
the Thirteenth Language Resources and Evaluation Conference. 3398-3406.
Avishek Lahiri, Pratyay Sarkar, Medha Sen, Debarshi Sanyal, and Imon Mukherjee.
2024. Few-TK: A Dataset for Few-shot Scientific Typed Keyphrase Recognition. In
Findings of the Association for Computational Linguistics: NAACL 2024. 4011-4025.
Yibin Lei, Di Wu, Tianyi Zhou, Tao Shen, Yu Cao, Chongyang Tao, and Andrew
Yates. 2024. Meta-task prompting elicits embedding from large language models.
arXiv preprint arXiv:2402.18458 (2024).

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the middle: How language models
use long contexts. Transactions of the Association for Computational Linguistics
12 (2024), 157-173.

Robert Logan IV, Ivana Balazevi¢, Eric Wallace, Fabio Petroni, Sameer Singh,
and Sebastian Riedel. 2022. Cutting Down on Prompts and Parameters: Simple
Few-Shot Learning with Language Models. In Findings of the Association for
Computational Linguistics: ACL 2022. 2824-2835.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

Kelvin Luu, Xinyi Wu, Rik Koncel-Kedziorski, Kyle Lo, Isabel Cachola, and Noah A.
Smith. 2021. Explaining Relationships Between Scientific Documents. In Pro-
ceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (Eds.). Association for Computational Linguistics, Online, 2130-2144.
doi:10.18653/v1/2021.acl-long.166

Himanshu Maheshwari, Bhavyajeet Singh, and Vasudeva Varma. 2021. SciBERT
sentence representation for citation context classification. In Proceedings of the
Second Workshop on Scholarly Document Processing. 130-133.

George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39-41.

Josh M. Nicholson, Milo Mordaunt, Patrice Lopez, Ashish Uppala, Domenic
Rosati, Neves P. Rodrigues, Peter Grabitz, and Sean C. Rife. 2021. scite:
A smart citation index that displays the context of citations and classi-
fies their intent using deep learning. Quantitative Science Studies 2, 3 (11
2021), 882-898. doi:10.1162/qss_a_00146 arXiv:https://direct.mit.edu/qss/article-
pdf/2/3/882/1970740/qss_a_00146.pdf

Jeppe Nicolaisen. 2007. Citation analysis. Annual review of information science
and technology 41, 1 (2007), 609-641.

Kai Nishikawa and Hitoshi Koshiba. 2024. Exploring the applicability of large
language models to citation context analysis. Scientometrics 129, 11 (2024), 6751—
6777.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference on


https://arxiv.org/abs/1705.02364
https://arxiv.org/abs/1705.02364
https://arxiv.org/abs/1705.02364
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://doi.org/10.18653/v1/2021.acl-long.166
https://doi.org/10.1162/qss_a_00146
https://arxiv.org/abs/https://direct.mit.edu/qss/article-pdf/2/3/882/1970740/qss_a_00146.pdf
https://arxiv.org/abs/https://direct.mit.edu/qss/article-pdf/2/3/882/1970740/qss_a_00146.pdf

Adapting Pretrained Language Models for Citation Classification via Self-Supervised Contrastive Learning

0.76 §
0.74

0.72 1

ACL-ARC FOCAL ACT2

0.58

0.56 1

0.54 4

0.52

— T L S S — T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Accuracy with varying f (x-axis) and y. The dashed
line is the performance without KP.

[48]

[49

[50

[51

[52]

[53

[54]

[55]

[56]

Empirical Methods in Natural Language Processing (EMNLP), Alessandro Moschitti,
Bo Pang, and Walter Daelemans (Eds.). Association for Computational Linguistics,
Doha, Qatar, 1532-1543. doi:10.3115/v1/D14-1162

Julien Perier-Camby, Marc Bertin, Iana Atanassova, and Frédéric Armetta. 2019.
A preliminary study to compare deep learning with rule-based approaches for
citation classification. In 8th international workshop on bibliometric-enhanced in-
formation retrieval (bir) co-located with the 41st european conference on information
retrieval (ecir 2019), Vol. 2345. 125-131.

Georgios Petasis, Alessandro Cucchiarelli, Paola Velardi, Georgios Paliouras,
Vangelis Karkaletsis, and Constantine D Spyropoulos. 2000. Automatic adapta-
tion of proper noun dictionaries through cooperation of machine learning and
probabilistic methods. In Proceedings of the 23rd annual international ACM SIGIR
conference on Research and development in information retrieval. 128-135.
Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. arXiv:1802.05365 [cs.CL] https://arxiv.org/abs/1802.05365
David Pride and Petr Knoth. 2020. An authoritative approach to citation classifi-
cation. In Proceedings of the ACM/IEEE joint Conference on Digital Libraries in
2020. 337-340.

David Pride, Petr Knoth, and Jozef Harag. 2019. Act: An annotation platform for
citation typing at scale. In 2019 ACM/IEEE Joint Conference on Digital Libraries
(JCDL). IEEE, 329-330.

Xiang Ren, Jialu Liu, Xiao Yu, Urvashi Khandelwal, Quanquan Gu, Lidan Wang,
and Jiawei Han. 2014. Cluscite: Effective citation recommendation by information
network-based clustering. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 821-830.

Muhammad Roman, Abdul Shahid, Shafiullah Khan, Anis Koubaa, and Lisu Yu.
2021. Citation intent classification using word embedding. Ieee Access 9 (2021),
9982-9995.

Zeren Shui, Petros Karypis, Daniel S Karls, Mingjian Wen, Saurav Manchanda,
Ellad B Tadmor, and George Karypis. 2024. Fine-Tuning Language Models on Mul-
tiple Datasets for Citation Intention Classification. arXiv preprint arXiv:2410.13332
(2024).

Yizhou Sun, Hongzhi Yin, and Xiang Ren. 2017. Recommendation in context-rich
environment: An information network analysis approach. In Proceedings of the
26th International Conference on World Wide Web Companion. 941-945.

1551

[57

Association for Computational Linguistics: EMNLP 2023. 8551-8568.
(58]

and knowledge management. 2472-2481.
[59]

6382-6388.
[61

arXiv:2012.15466 (2020).
[62

2020. 962-972.
[63]

Understanding Workshop (ASRU). IEEE, 1-8.

=
=

arXiv:2402.16009 (2024).
[65

guistics: EMNLP 2023. 12259-12275.
[66

in Information Retrieval. 1041-1044.

A Hyperparameter Ranges

We tune A1, A3 € [0.01,0.3], 71, 72 € [0.1, 20], the model dimension
d, € {256,128,64}, d € {1024, 512, 256, 128}, the batch size |B]| €

{4, 8,16}, learning rate Ir € {ieis}ie{1,2,4,10}> dropout rate dr
{ie™%} ie{0,1,5)- For the Llama3 experiments, we tune the lora rank
r € {8,16,32, 64}, the lora alpha a € {8,16,32}.

B Details of STKs

The statistics of the extracted STKs are summarized in Table 4.

C Supplementary Experiments

Figure 6 is the respective Accuracy of Figure 3.
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Table 4: STKs statistics. "Type-agnostic" is the total quantity of STKs. Under each class, we report the average number of

keyphrases of that class per sample.

Dataset ‘ Type-agnostic | Task Material Technique Process Measure Concept
ACL-ARC 6,801 1.14 1.87 1.72 0.76 0.48 3.07
FOCAL 21,244 0.91 3.73 1.44 1.42 2.48 442
ACT2 13,731 1.11 2.20 0.83 0.73 1.03 4.15

D Instructions for LLMs

Prompt for STKs extraction

You are provided a context from a paper P, and please
ignore the #CITATION_TAG. Your task is to identify
scientific keyphrases from the context. Each scientific
keyphrase belongs to one of the following classes:

- [Task]: The scientific problem or research focus addressed
in the paper. It outlines the specific objectives or questions
that the study aims to answer.

- [Material]: All materials utilized in the study, such as
experimental tools, datasets, and the objects or subjects of
investigation. It details the resources of the research.

- [Technique]: The specific methods, models, frameworks,
or systems. It identifies the approaches taken to analyze
data or solve problems.

- [Process]: It describes a sequence of steps or operations
involved in a particular procedure, algorithm, or workflow.
It emphasizes the procedural aspects.

- [Measure]: This class pertains to the metrics, indicators,
or criteria used to assess or quantify the outcomes of the
study.

- [Concept]: This category encompasses scientific
keyphrases that do not fit into the aforementioned classes.
It may include phenomena, theoretical terms, or entities
relevant to the field of study.

Output your answer only in JSON format and be
consistent with the text in the original context. Specifi-
cally, if there is any keyphrase of a certain class, use the
class label as the key and the list of keyphrases as the value.

Here is an example: "The framework represents a gener-
alization of several predecessor NLG systems based on
Meaning-Text Theory: FoG (Kittredge and Polgu re, 1991),
LFS (Iordanskaja et al., 1992), and JOYCE (Rambow and
Korelsky, 1992). The framework was originally developed
for the realization of deep-syntactic structures in NLG (
#CITATION_TAG )"

Output:{"Technique’: ['NLG systems’, 'FoG’, 'LFS’, JOYCE’,
"Meaning-Text Theory’], ’Concept’:['deep-syntactic struc-
tures’]}

Here is the context:{T}
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Prompt for the IFP baseline

You are provided a context from a paper P citing a paper Q,
with the specific citation marked as the "#CITATION_TAG’
tag. Please analyze the citation function of the context,
which represents the author’s motive or purpose for citing
Q. The six classes of citation functions are:

- [BACKGROUNDY]: The cited paper Q provides relevant
information or is part of the body of literature in this do-
main.

- [COMPARES_CONTRASTS]: The citing paper P expresses
similarities or differences to, or disagrees with, the cited
paper Q.

- [EXTENSION]: The citing paper P extends the data, meth-
ods, etc. of the cited paper Q.

- [FUTURE]: The cited paper Q is a potential avenue for
future work.

- [MOTIVATION]: The citing paper P is directly motivated
by the cited paper Q.

- [USES]: The citing paper P uses the methodology or tools
created by the cited paper Q.

Here is the context: "{T}"

Only output the most appropriate class to categorize #CI-
TATION_TAG and enclose the label within square brackets
-
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