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: Amine-impregnated solid adsorbents are widely explored for point source capture and direct air capture
. (DAC) to address climate change. Existing literature serves as a valuable source for the investigation
of amine-functionalized solid adsorbents. This study selected 52 articles from bibliographic platforms
using GPT-assisted data source screening. A total of 1,336 data points were manually collected.
Each data point is characterized by 28 features including the CO, capture performance of various
adsorbents from diluted to concentrated sources, resulting in 29,857 records. The methodology
addresses inconsistencies in units and terminologies in the published articles and demonstrates
database reliability, regularity and integrity through statistical analysis. The diverse types of amines
and mesoporous solids in the database offer innovation potential for future research. In addition, two
machine learning models were trained to promote dataset reuse by scientists from lab-based research
and cheminformatics. This study provides opportunities to explore the use of machine learning on small
databases and encourages data sharing and uniform reporting among DAC communities.

Background & Summary
The Paris Agreement was adopted by 196 Parties at the UN Climate Change Conference (COP 21) to limit the
. global average temperature increase'. The global demand for a carbon-neutral future drives research efforts
. to understand climate technology at various scales?’. At COP 28, Parties decided to improve climate technol-
ogy development and transfer through The Technology Mechanism, including the use of artificial intelligence
(AI) in technology needs assessments for 2023-2027*. The roles of Al in facilitating climate technology imple-
mentations are widely discussed in aspects of carbon capture and storage (CCUS) and carbon dioxide removal
(CDR) technologies®®. Direct air capture (DAC) technology is one of the CDR technologies that removes CO,
from the atmosphere using chemisorption or physisorption. The common sorbent involves alkaline solutions,
amine-functionalized adsorbents, ion-exchange resins, metal-organic frameworks (MOFs), etc. Among all these
materials, the crystalline structural information of MOFs can be stored in CIF (Crystallographic Information
File) format, which allows easier archiving, analysis, and visualization for data interoperation, sharing and reuse
in compliance with the FAIR Principles®!!. In contrast, the datasets available for amine-functionalised solids as
DAC adsorbents are mostly confined to the laboratory stage.

Supported polyethyleneimine (PEI) adsorbents have been studied for carbon capture since 20022, The
amine-impregnated adsorbent is a class of supported amines where small amines, polyamines or mixed amines
and additives are impregnated on the surface of the porous solid through non-covalent interactions'. It is one
of the most widely studied DAC adsorbents among previous research, owing to their accessibility and reactivity

: towards CO,'. The physical impregnation method offers lower costs, simpler operations, and higher amine
: content compared to other types of supported amines'>. However, challenges remain regarding amine leaching
and the stability of the adsorbents'®. Amine-grafted adsorbent is another class of widely studied adsorbents
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that possess higher stability due to the covalent bonding of amines to the solid supports'’. Additionally, the
amine-grafted adsorbent was widely involved in computational studies for investigations in CO, adsorption
mechanism or kinetic modeling for engineering design'®-?. The simulation study related to amine-impregnated
adsorbent is complex due to the diverse molecular structure of amines, the varied compositions and types of
porous solids (supports), the movement of amines on different supports, and the synergistic interactions between
amines and the supports®*-°. The limited availability of dataset for amine-impregnated adsorbent has hindered
the application of advanced AI technology in studying their performance for DAC. Although, the powered
amine-functionalised adsorbents are not suitable for pilot DAC applications, the investigation in their compo-
sitions provided valuable insights in CO, adsorption processes”-*. Current research focuses on enhancing the
efficiency, stability, and adsorption kinetics of fabricated amine-functionalized adsorbents for direct air capture
(DAC)*. Additionally, efforts are being made to develop simulation techniques and adsorption units suitable
for larger-scale applications of related DAC adsorbents*"*2. The significance of sharing a computational-ready
database for amine-impregnated solid adsorbents include: (1) Enabling AI models for designing and discovering
amine-functionalized solid sorbents. (2) Enhancing the understanding of structure-property relationships of
amine-impregnated solid sorbents through data-driven analysis and explanatory machine learning. (3) Offering
opportunities for incorporating large language models in the data extractions of related amine-functionalised
adsorbents. (4) Accelerating the identifications of promising amines and porous solid sorbents for DAC studies
and reducing unnecessary laboratory work. (5) Providing examples for creating and training small datasets
associated with material science®. (6) Encouraging uniform data reporting, data sharing and communications
of research ideas among the DAC communities.

Previous studies demonstrated dataset construction procedures through experimental data collection and
data extraction from the literature’»*. These datasets are suitable for training machine learning models that
make predictions on the performance of the CO, adsorbent materials. For example, Zhang et al. constructed a
database containing 1200 data points of porous carbon physisorbent for CO, capture. A deep neural network
model (DNN) was trained. The model prediction strongly correlates with the experimentally measured CO,
capacity of the selected porous carbon. In addition, a private dataset of amine-functionalised MCM-41 and
SBA-15 for CO, capture was constructed by Yildiz et al. The dataset comprises 1039 data points extracted from
28 publications spanning from 2002 to 2017. Statistical analysis and decision tree-based classification over the
dataset offered valuable recommendations on optimal amine type and operational conditions for achieving high
amine efficiencies on carbon capture®’. Another private dataset was constructed based on the properties of CO,
adsorbents prepared from Polyethylenimine (PEI) and Tetraethylenepentamine (TEPA) impregnated separately
on six commercially available porous solids®. A random forest model was trained to predict the CO, capacity,
amine efficiency, and cyclic stability of the PEI and TEPA-impregnated mesoporous silica KYX using the private
dataset. More recently, Li et al. demonstrated the training of a ChatGPT 40 model with in-context learning to
predict CO, adsorption uptake based on input features of adsorbent properties and adsorption measurement
conditions with approximately 200 data points®. The findings suggest that context-based modeling is effective
in reducing prediction errors when compared to conventional machine learning models in the predictive task.
The more comprehensive database derived from this work would further support investigations into the effects
of training data size and data diversity on the performance of machine learning models, facilitating a better
understanding of how to utilize Al models for lab based research*.

The previous research provided valuable adsorbent characteristics and performance indicators as effective
features to describe different amine-functionalised solid adsorbents. Inspired by the promising results, this study
aims to collect the data associated with amine-impregnated solid adsorbents with expansions in the range of
data source, data size and data diversity. One of the new categories of amine-impregnated solid adsorbent is
the adsorbent for DAC. Even though the research for DAC only started to emerge in the last ten years, the
accumulated publications are promising in creating a compact set of data for amine-impregnated solid adsor-
bents with diverse chemical and structural properties. Based on the manual data collection processes intro-
duced in previous research®>*’, the new dataset further considers the specific adsorbent characteristics for DAC,
such as the presence of hydroxy groups or surfactants, adsorption kinetics, sorbent stability and performance
at sub-ambient temperatures. These characteristics are crucial for understanding carbon capture science and
advancing the amine-functionalised adsorbents for DAC.

To the best of our knowledge, there is no publicly available database on amine-impregnated solid adsor-
bents for CO, capture from both diluted and concentrated sources. Despite all the expected contributions of a
publicly available dataset of amine-impregnated solids for carbon capture, many of the chemical and textural
properties, and the performance indicators of those adsorbents were reported in inconsistent units or technical
terms. Sometimes, the chemical and textural properties of the adsorbents are missing. Moreover, the kinetic
data reported are based on adsorption modeling equations or contained in figures. Furthermore, there are mul-
tiple approaches to defining promising amine-impregnated solid sorbents, which can lead to variations in the
reported types of performance indicators and missing data. In addition, some research focuses on the mecha-
nisms rather than applications of supported amines, where different types of measurement results are reported.
Therefore, the initial data collection and processing of amine-functionalised solid adsorbents relies on human
expertise. Based on previous research data, this work demonstrates the construction of an amine-impregnated
porous solid database for both lab and Al-related research in carbon capture science. The data were extracted
from 52 articles (52 cases), with 1,336 data points and 28 features for each data point. The methods used during
data collection and data processing are reported in the following sections (Fig. 1). By aggregating and stati-
cally validating the data from various research teams, the computational-ready dataset is expected to support
predictive and exploratory tasks across different laboratories, enhancing collaborative research efforts in DAC
technology.
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Fig. 1 The workflow of constructing the database of amine-impregnated adsorbents. The identified features
of each data point were collected from the bibliometric database, and the data sources were initially allocated
based on expert knowledge. Selected articles were screened by ChatGPT. The data collection process involved,
data extraction from text and figures, derivatization of data, literature search and measurement of missing
contextual data. The collection methods were validated through statistical analysis, and machine learning
models were trained for future applications of the database.

Methods

Data source selection via manual screening and prompt engineering. A comprehensive search was
conducted on Web of Science, Scopus, and Google Scholar to identify reliable and relevant sources on amine-im-
pregnated solid adsorbents for DAC (Fig. 2a). The keywords used for the search of targeted literature varied
depending on the responses from each search engine. Web of Science yields 325 articles with keywords “amine”
and “direct air capture” as topic indexes and “amine efficiency” as added keywords during the literature search.
Scopus yields 595 research articles with “amine” “air” and “capture” as topic indexes. The search results suggested
publication numbers of research in amine functionalised adsorbent for DAC increased dramatically from 2005.
Therefore, the time frame of 2005-2024 was used for the search on Google Scholar. The terms “amine”, “impreg-
nated,” and “direct air capture” resulted in 791 articles overall. The exported literature was filtered with defined
rules based on domain knowledge. The exclusion criteria are summarized in descending order based on their
level of ease of recognition (Table 1).

The first round of data source screening resulted in approximately 30 articles associated with an
amine-impregnated adsorbent for DAC. Noteworthy, 10 out of the 30 selected articles involved studies of sup-
ported amines not only under DAC conditions but also under simulated flue gas or pure CO, stream conditions.
The partial pressure of CO, is a crucial factor influencing the performance of amine-impregnated adsorbents'.
Since DAC is relatively new compared to point source carbon capture, the performance of supported amines
under pure CO, and flue gas conditions was studied earlier, and more literature is available. These previous work
provide valuable insights for investigating novel DAC adsorbents. Therefore, the database could be expanded
by including studies on amine-impreganated solid adsorbents under different partial pressures of CO,. As a
challenge, the fixed-bed breakthrough experiments are one of the major techniques to assess the performance
of amine-impregnated solid adsorbents in earlier publications. In addition, the focus on adsorbent properties
changes with the demands of climate technologies over time. These articles are not included in the final dataset
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b) Prompt for ChatGPT

prompt = f""
As a scientist specializing in amine-impregnated solid adsorbents for direct air capture (DAC), your task is to review the literature for inclusion in a
database aimed at training machine learning models. Select articles that provide data on the following criteria:

1. Variations in primary, secondary, and tertiary amine ratios.

2. Molecular weights and functional groups of the amines.

3. Porous solid support properties, including BET surface area, pore volume, and diameters.

4. Quantity of amines loaded onto the supports.

5. CO, uptake capacities, cyclic stabilities, amine efficiencies, and uptake kinetics under specific CO, conditions (preferably 400 ppm, but flue gas and
pure CO, conditions are also acceptable).

6. Kinetic data presented as adsorption kinetic models and in adsorption isotherm figures.

Exclude articles that focus on pre-treated samples for aging and oxidative resistance studies.

Evaluation Process:
- Review the titles, abstracts, figure legends, and table legends of the articles.
- Provide a "Yes" or "No" answer for each article's relevance based on these criteria:

. **TGA for CO, Capacity**: CO, capacity must be measured by TGA. Look for "TGA" near mentions of "CO, capacity."

**N2 Physisorption Isotherms**: While N, physisorption indicates textural properties, it does not confirm TGA usage for CO, capacity.

**Breakthrough Curve**: If the figure legend only contains a breakthrough curve without CO, details.

**Impregnation Method**: The abstract must specify that the amine was impregnated, not grafted.

**Common Additives**: Identify if common additives are mentioned and ensure the ratio of amine to additive is provided.

**Oxidative Treatment**: Frequent mentions of "oxidative," "steam," "treated," or "treatment" may indicate exclusion.

**Expert Judgment**: Use expertise in amine-impregnated adsorbents to guide decisions if not all keywords are present.

**Minimal Data**: If an article does not contain adsorption isotherm figures and the total number of tables and figures is fewer than 3, the decision might
be “No”.

PNOORWON =

Don't write code, Don't explain. Just give the answer with "Yes" or "No".
- The title is: {title}

- The abstract is: {abstract}

- The keywords are: {keywords}

dialogues = [ {"role": "system", "content": "Act as a scientist in amine-impregnated solid adsorbents for direct air capture (DAC) research, you can judge
whether the paper should be used to create a database for training machine leaning model prediction, make the output in the same format as the previous

cell},
{"role": "user", "content": prompt},
{"role": "assistant", "content": ""} ]
@ (%) Interaction with Al
c) Result
TP
- C’ Precision = p 1 Fp
True Positive = 43 articles Result from scientists:
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Fig. 2 The detailed workflow on the method for data allocation. (a) The initial data screening was carried out

by scientists in amine-impregnated solid adsorbents and (b) The second round of screening involves prompt
engineering and interactions with GPT where the prompt used is shown in panel b. (c) The output by the GPT
model were verified and processed by scientists in detail to collect the relevant data. Overall, there are 71 articles
in total, and 52 articles were selected for final data collection. The accuracy of the GPT model was assessed using
the formulas indicated in panel c.

to prevent bias introduced by the measurement techniques of the adsorbent. This will degrade the completeness
of data ranges in the dataset as a trade-off. Expert-defined rules were applied during the second-round search
for expansion of the datasets. The earliest research on amine-grafted solid adsorbents under both 0.04% and
10% volume CO, conditions was published in 2010, while the first study on amine-impregnated solid adsorbents
under these conditions was published in 2011241, Therefore, the timeframe for the second-round search is from
2011 to 2024. The investigation of the adsorbent properties under varying CO, conditions is anticipated to yield
results that are more consistent with those from earlier studies. The same keywords were used on Web of Science
and Scopus. The keywords used on Google Scholar include “amine’, “1mpregnat10n” “CO,”, “adsorption”, “flue
gas” and “thermal gravimetric analysis (TGA)” with exclusions of “graft”, “grafting” and “grafted”, resulting in
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Exclusion Criteria Explanations and Limitations

Excluded Literatures

Techno-economic analysis or life

Does not contain the desired data.
cycle assessments

Sorbent fabrications, system design Utilizing a standard adsorbent or a single adsorbent as examples which contain limited data
and simulation studies associated with this dataset.

Mechanistic and ageing studies of the

adsorbents Contains distinct focuses on adsorbent properties, instrumental methods and operational conditions

Discovery of optimal preparation
method or synthesis of novel
adsorbents

Some research offers valuable data on optimal synthetic conditions for amine-impregnated solid
adsorbents™. However, some of those studies focused on only one or two adsorbent properties.

Class IT (Amine-grafted adsorbents) and Class IIT adsorbents (made from in-situ polymerization
of amine containing monomers) are distinct classes of supported amines with different preparation
methods, chemical properties, and overall performance!'®.

Class IT and Class III amine-
functionalized adsorbents

TGA is not involved in the Different instrumental methods require varying sample quantities and operational parameters,
measurement of CO, uptake resulting in slightly different measurement results.

Missing key data or overlapping A few articles didn’t contain the ratio of amine to additives or additive loading within the
points in graphical datasets adsorbent!!7118,

Excluded Parameters

The experimental parameters for impregnation are crucial for laboratory chemists to prepare optimal
adsorbents. Key factors include solvent type, amine concentration, reaction scale, temperature, time,
and the techniques used. While solvent types and reaction conditions are generally available, details
on methods such as rotary evaporation, submersion, or sonication are often reported inconsistently®®.
Additionally, some articles lack information on reactant quantities and ratios. Omitting these
parameters may limit the dataset’s usability for adsorbent preparations.

Sample preparation methods

Adsorbents are pretreated by TGA before gas adsorption measurements, requiring key activation
parameters such as vacuum drying conditions, activation time and temperature, ramping rate,
purge gas composition, and purge gas flow rate. Excluding these parameters may reduce the dataset’s
comprehensiveness, but many are often underreported.

Activations

Various articles have employed different instruments for CO, adsorption studies, including gas
adsorption analyzers, surface area and porosimetry analyzers, fixed bed breakthrough experiments,
and custom systems designed for specific conditions, particularly in humid environments®%7°.
Omitting these details may impact the dataset’s accuracy for model training.

Instrument for CO, adsorption

The TGA setup parameters, such as purge gas, the gas used to balance the feed gas during adsorption
measurement, feed gas flow rate, stabilization time, and ramping rate, can significantly influence

the adsorption and desorption performance of the adsorbent®”. Those parameters vary based on the
TGA temperature profiles objectives of the gas adsorption studies, the purge gas employed, and the temperatures used during
each measurement. Some of these factors are inconsistently reported. Additionally, the TGA setup
for cyclic studies depends on the working capacity of amine-functionalized adsorbents, adding
complexity to data collection.

The kinetic and equilibrium parameters are crucial for modeling of fixed-bed column performance of
amine-functionalized adsorbents?**°. Additionally, the thermodynamic parameters such as enthalpy
(AH), entropy change (AS), sensible heat and activation energy are also critical for evaluating

the feasibility of an adsorbent for CO, capture!'®. These parameters provide a comprehensive
representation of the adsorbent’s performance, enabling engineers to assess their potential for
energy-related applications. However, a significant drawback is that these data are often absent in
most existing literature on amine-functionalized adsorbents and are not considered as chemical
descriptors in this dataset.

Energy related parameters

Table 1. Explanation and limitations of excluding specific literature and parameters related to DAC adsorbents.

724 articles. The second round of searches focuses on literature containing various supports, amines, and addi-
tives to enhance dataset diversity. Additionally, it checks for any missed articles from the first round.

To accelerate the second round of data source screening and allow a time-saving validation of all the selected
articles, a prompt was developed based on the features of a few selected articles and fed to the large language
model GPT-3.5-turbo (Fig. 2b)*%. To integrate GPT-3.5-turbo into the experimental pipeline, API calls were
configured with a system prompt that defined the assistant’s role, while user queries were formatted as message
objects. The titles, keywords, and abstracts of all 71 potential articles identified through web searches were input
into the GPT model. Based on the provided prompt, the model identified 54 articles as “Yes” and 17 articles as
“No.” The articles assigned “Yes” by the GPT model were thoroughly processed by scientists to extract relevant
data. During this review, the scientists found that 11 out of the 54 articles were incorrectly assigned (False
Positive: FP = 11, True Positives: TP =43). The articles assigned “No” by the GPT model were checked by the
scientists, and it was determined that 9 out of the 17 were incorrectly classified (False Negatives: FN =9, True
Negatives: TN =8). After validating and finalizing all responses from the GPT model, 52 articles were selected
for database construction. The performance of the GPT model was evaluated using precision and recall, result-
ing in an F1 score of 0.81, as indicated in Fig. 2c. The input and output for the GPT model, along with informa-
tion on the selected articles, can be found in Table S1 and Table S2, respectively (see supplementary xlsx file).

Identification of chemical descriptors and unit conversions. The selection of appropriate per-
formance indicators for amine-impregnated adsorbents is crucial for ensuring the dataset’s quality for future
research (Table 2). Both CO, capacity and amine efficiency are essential for evaluating an adsorbent performance
based on laboratory research which also offer insights into CO, interactions with specific amines**-*. Those two
parameters were also frequently reported in former research and investigated by machine learning models®>.
The kinetic parameters and heat of adsorptions are performance indicators which assist the understanding of
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Features Explanations

Chemical Properties of Amines:

Amine type (Amine 1) Polyamines and small amines selected for wet impregnation

The ratio of the quantities of primary, secondary, and tertiary amines, reported by the vendors or previous

1°,2°, 3° Amine Ratio
research.

Number averaged molecular weight (M,) of polyamine or molecular weight of small amines reported by

Molecular Weight (g/mmol) the supplier or measure by GPC.

Organic Content (%) The weight percentage of organic molecules in the adsorbents.

Amine Content (mmol/g) The moles of nitrogen per gram of adsorbent, obtained by elemental analysis or theoretical calculations®®.

Additional amine molecules (e.g., diethanolamine) or additives (e.g., surfactants, templating agents)
which were incorporated with amine 1 during the impregnation process to enhance the adsorbent’s

Additives efficiency. Typically, either one additive (additive 2) or one other amine (amine 2) was used; however,
there were instances where two additives (additive 2 and another additive 3) were mixed with amine 1.

Additive to Amine Ratio The weight ratio of additives to amine 1 in the adsorbent.

OH to N ratio The ratio of OH groups to amine groups in the adsorbent, typically measured through elemental analysis.

Textural Properties of the Solid Supports:

A wide range of porous support for amine impregnations such as mesoporous silica, hierarchical silica,

Porous Solid Support MOFs and zeolites.

BET Surface Area (cm?/g) Obtained from BET (Brunauer-Emmett-Teller) surface area analyzer.

The liquid volume adsorbed at a given pressure (P/P,=0.99) by pristine solid supports. Some research
Total Pore Volume (cm*/g) reported both the micropore and mesopore volumes separately, while the majority only reported the total
pore volume.

Calculated from NLDFT or BJH methods or estimated based on reported surface area and pore volume

Average Pore Diameters (nm) (assuming the pores are cylindrical).

Operational Parameters:

Adsorption Temperature (°C) The predetermined temperature during the adsorption of CO,.

CO, concentrations are 0.04% in nitrogen, helium or argon for DAC conditions, 10-30% in nitrogen,

€O, concentration (vol%) helium or argon for flue gas, and 100% in pure CO,.

Adsorption time (t) The set time for CO, adsorption measurement.

Flow Rate (mL/min) The set speed of the feed gas during the adsorption test on TGA.

Desorption temperature (°C) The temperature required for the adsorbent to desorb CO,.

Relative Humidity (%) The percentage of water content in the fed gas for adsorption measurements.
Number of Cycles The number of cycles performed during adsorption-desorption cyclic tests.

Performance Indicators:

CO, Capacity (mmol/g) The maximum capacity of CO, (absolute capacity) that an adsorbent can adsorb within a specified time.
CO,/N Amine Efficiency (mmol/mmol) | The moles of CO, adsorbed per mole of amine group within a solid amine adsorbent.

Time to half saturation (min) The time required for the solid adsorbent to reach half of its saturation capacity (absolute capacity).
Time to 90% Saturation (min) The time required for the solid adsorbent to reach 90% of its saturation capacity (absolute capacity).

The percentage change in the weight of the adsorbents in the final adsorption cycle compared to their

Weight Loss Stability (%) initial CO, adsorption capacity.

The percentage change in CO, uptake capacity of the adsorbents was measured at the final adsorption

Capacity loss stability (%) cycle compared to their initial CO, adsorption capacity.

The heat of adsorption data indicates the strength of interaction between CO, and the amine-
impregnated adsorbents. It was mainly estimated based on the measurement of TGA differential scanning
Heat of Adsorption (kJ/mmol) calorimetry (DSC), a few heat of adsorption data were obtained using the Clausius-Clapeyron equation or
dual-site temperature-dependent Toth isotherm®”!72, One article reported it as heat of desorption which
is considered interchangeable with heat of adsorption*”7>.

Table 2. The selected features within the dataset. GPC: Gel Permeation Chromatography, NLDFT: non-local
density functional theory, BJH: Barrett-Joyner-Halenda.

adsorption phenomena®®*. Although these parameters were not widely reported for amine-impregnated adsor-
bents, they are valuable for the simulation and modeling of adsorption breakthrough curves and regeneration
heat during the engineering design processes***%. The time to half saturation and 90% saturation of the adsorbent
is chosen since the adsorption behaviour of most amine-impregnated adsorbents was not represented by kinetic
models and the rate coefficient were not widely reported. As a drawback, apart from the time to reach CO, satu-
rations the reported energy-related parameters were limited especially for amine-impregnated adsorbents. The
limitations for excluding energy-related factors are summarised in Table 1. The cyclic stability related to thermal,
hydrothermal, and chemical parameters of the adsorption process is another crucial performance indicator to
assess the sustainability and economic feasibility of an adsorbent®. Even though the cyclic stability of powdered
adsorbents measured by TGA provides insights into the performance of adsorbents under practical conditions,
stability-related data may vary under breakthrough conditions and was sometimes not reported in the selected
studies®>*!. This dataset only includes commonly reported temperatures for the adsorption-desorption process,
the number of adsorption-desorption cycles, and the weight and capacity loss of adsorbents.

Previous lab research has predominantly focused on optimizing adsorbents by employing different
amines and solid supports to achieve an optimal balance among several performance indicators. However,
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the preparation of each individual adsorbent typically requires time from 6 to 12hours in the laboratory, with
adsorption measurements extending the overall timeframe even further. The selected chemical descriptor of
this database focuses on the amine and support properties for lab-based research to identify potential combi-
nations of starting materials to enhance target performance indicators (Table 2). Applying machine learning or
advanced AI models to this dataset would help chemists identify patterns and optimal feature combinations to
achieve target properties, thereby reducing the learning curve for researchers across various disciplines.

The composition and structure of different amine molecules are key features influencing the performance of
adsorbents. For the dataset to be deemed suitable for computational tasks, the input datasets should encompass
more than abbreviated amine names. Describing the molecular structure of amine molecules with numerical
input can make the dataset more practical for scientists without significant coding knowledge. The adsorbents
preparation uses various linear polyamines, branched polyamines or small amines, which exhibit different
mobility, viscosity, and volatility when impregnated within porous solids'*#**. Chemically, the ratio of primary,
secondary, and tertiary amines within a specific polyamine molecule interacts with CO, through different mech-
anisms, making it a key factor influencing the efficiency and oxidative stability of the adsorbents®>>. The molec-
ular weight of the polyamines is related to the viscosity of the adsorbents and corelates with the performance in
CO, capacity and amine efficiency®*. Furthermore, the presence of additives could also influence CO, capacity,
amine efficiency, adsorption kinetic and adsorption heat of amine-impregnated adsorbents®. In terms of the
porous support, their surface chemistry, pore size and pore geometries are also crucial factors to influence the
amine loading, capacity, kinetics or stabilities of the adsorbent**.

Apart from features of amine and porous support the preparation and activation of amines and instru-
mental setups for CO, adsorption also influence the properties and performance indicators of the adsorbents.
These experimental parameters are critical for achieving the desired amine loading and textural properties of
amine-impregnated adsorbents, as well as for optimizing their performance®.The operational parameters such
as adsorption temperature, humidity and flow rate of purge gas are critical for the measured adsorbent perfor-
mances®””%8, The information about the methods used for measuring adsorption performance is essential for
ensuring reliable comparisons and interpretations across different studies. The explanations and limitations for
excluding these factors are outlined in Table 1. Additionally, Table S3 (see supplementary xlsx file) summarizes
missing experimental and instrumental parameters, highlighting that the availability of data for these factors in
constructing a complete dataset involves trade-offs.

The following section address issues in inconsistently reported chemical features. The unit conversion and
data derivatization process ensure that the dataset is aligned with the original research while enhancing the
integrity of the datasets. In some articles, the term “amine loading” was used to describe the percentage weight of
amine impregnated on a solid adsorbent; however, others employ the term “organic content” instead. The term
“amine loading”, “amine content”, or “nitrogen content (N content)” were also used to denote the quantity of nitro-
gen per gram of the adsorbent. Furthermore, the N content is sometimes reported as a percentage of the adsor-
bent’s weight (N, jsmen)> these values were converted to moles of nitrogen per gram of adsorbent (Formula 1).
The molar mass of nitrogen is 14.01 g/mmol. M. tepresents the weight of the adsorbent. This term can be
omitted from the formula as it does not impact the calculation.

N content = Nadsarbent ) Madsarbent
14.01 - Madsorbent (1)

Notably, within our dataset, “organic content” is employed to represent the weight percentage of organic
molecules impregnated on the solid adsorbents, a term considered more precise, particularly when the solid
adsorbents encompass both amine molecules and additives.

Most of the obtained data was reported in consistent units, but some literature presented inconsistent units
that required further processing by scientists. One common inconsistency is the use of “per gram adsorbent” or
“per gram solid support” as the denominator for organic content (%), pseudo-equilibrium CO, uptake (mmol),
and textural properties of the solid adsorbents (6 cases). Jones et al. explained that reporting textural properties
per gram of solid support allows for more insightful structural comparisons. They also reported CO, capacities
in both units for easier comparison®. Other studies also use different CO, capacity units such as “mg/g,qorbent”
(3 cases) and wt% of the adsorbent (1 case). Since most research uses “per gram adsorbent” as the denominator
for representing properties and performance of amine-impregnated adsorbents, CO, uptake capacities per mass
of adsorbent were converted to mmol/g®.

As a challenge, the units for the textural properties of the solid adsorbents cannot be converted directly with-
out instrumental measurement and analysis. To address this problem, we only report the textural properties of
the pristine solid supports as textural property features in our final datasets. Moreover, utilising the textural
properties of pristine solid supports as the input for Al model training is justifiable, as these properties are more
fundamental than the textural properties of impregnated solid supports in laboratory-based research. The tex-
tural properties of commercially available porous solids may be provided by the vendors, and no experiment is
required for such input parameters. When the organic content (x) of an adsorbent is reported as percentage per

gram of the solid support (x,,,,,,,), conversions are made using the following formula to obtain the percentage

value per gram of adsorbent (x,pen;)- Noteworthy the mass of solid support (M,,,,,,,) can be disregarded
(Formula 2).
x _ xsupport : M:uppart
adsorbent —
Msupport(l + xsupport) (2)
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Calculations of nitrogen content and amine efficiency. The chemical feature “Nitrogen Content” is
often missing; however, this feature can be easily calculated when both the CO, capacity and the amine efficiency
are provided by the article (Formula 3).

CO, Capacity

Amine Efficiency =
ff 7 N Content (3)

In some of the previous research neither the N content nor the amine efficiencies are provided, the N content
can still be estimated based on the molecular structure of the amine. When small amine is used for impregna-
tion, the N content is determined by the number of N (N,,,,.s 4mine) i the molecule and the number of moles of
amine per gram of adsorbent (Formula 4). The moles of amines per gram adsorbent can be calculated from the
mass of amines (Organic Content - M. .p.n) OVer the molecular weight of the amine (MW).

- Organic Content - M, pont
MW - Madsorbent (4)

N content = I\Tsmallamine

When polyamine is used for impregnation, the degree of polymerization of the polymer (DP) is first determined
via the number average molecular weight (M,) of the polyamine over the molecular weight of the repeating unit
(7) (Formula 5). The number of N within a polyamine (Np alyamine) can be calculated based on the number of N
atoms within the repeating unit (N, . ;i ;) a2d DP. The N content can then be estimated following the similar
procedure as the small amine-impregnated solid adsorbent (Formula 6). The simplified formula showed that
only the molecular weight of the repeating unit (7%7) of a polyamine and the organic content are needed to esti-
mate the N content per gram of the adsorbent (Formula 7).

Mﬂ
DP =
m ©)
(DP- N, .. .)- Organic Content - M
N content — repeating unit & adsrobent
Mn~ : Madsorhent (6)
N content = (M - Nyepeating unit) = Organic Content 7

Estimation of additive to amine 1 ratio and OH to amine ratio. When the amine-impregnated solid
adsorbent contains additives, the organic content involves both amines and additives. However, a few articles do
not contain the organic content of the adsorbents. In one case, the article reported the percentage weight of amine 1
(x,) per gram of the adsorbent (M, 4, 4,,) and the percentage of additive (x,) per gram of the support (M,,,,,,,)*'-
The Organic Content (Formula 8) and the additive to amine 1 ratio (R,) can be calculated (Formula 9). Detailed

calculations are provided in Table S4 (see supplementary xlsx file).

1 —
Organic Content = = 1 — al
1+ x, (8)
R-X 1-x
“ x; 1+ x, )

In a few cases, the OH to amine ratio (R;) was not reported. The (R ;) can be determined from the known
percentage weight of amine 2 or additive 2 per gram of adsorbent (x,), the molecular weight of the additive
(MW, 14i4ive ) the number of OH groups (Np,;) per additive molecule and the N content of the adsorbent (Formula 11).
In some instances, the percentage weight loading for amine 2 or additive 2 per gram of adsorbent (x,) was not
reported. This can be estimated based on the organic content and the ratio of amine 2 or additive 2 to amine 1
(R,) as outlined in Formula 10. Notably, R, is provided in most articles. Detailed calculations are provided in
Table S5 (see supplementary xlsx file).

__ R, - Organic Content

X,
1+ R, (10)
%, - Non 1
Roy = .
M‘/V;zdditive Ncontent (11)

The estimation of average pore diameters. The average pore diameter (V,) of the pristine solid support
was not reported in 15 out of the 52 cases of literature. Those missing value were estimated from the reported BET
surface area (S) and the average pore volume (D,). The formula applies exclusively to porous supports with cylin-
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Model Equation Rearranged Form Parameters
Persudo-second order kgt PR k, (mg/g-min)~": the rate constant of
=1y kgt " kaafa,— ap) second-order adsorption.
e k, (min) ™" the rate coefficient
A : 1 _ _ n In—t— 1 (min)~": the rate coefficien
vrami mode q, = q[1 — exp(—k,")] (— (%)ﬁ 1 Avrami constant
1
i - _ 1-n , n—1, ,m-L mi(q,—q)t " —ql "L | driving force constant
Fractional-order model q,=4q,-(q, "+ kT = (e k,,t(n —5— )™ | m:diffusion resistance constant
Rearrangement of the equation is not applicable.
Double Experimental Model — o _ Delort _ p oot kp; (min~") and D, (mg/g) are the adsorption rate and diffusion rate for
4= 4 ! 2 the fast step; kp, (min~") and D, (g /g) are the adsorption rate and
diffusion constant for the slow step.

Table 3. The kinetic models used to calculate the time to half saturation and the time to 90% saturation of the
adsorbents.

drical pore geometries, such as SBA-15, MCM-41, and MCM-48. Three of the fifteen article didn’t report average
pore diameters for more complex porous supports, including commercial nano silica, mesoporous silica foam,
and zeolites, leading to 47 missing data points.

4V

D =2
P (12)

Calculation of adsorption from kinetic models.  The adsorption isotherm is a valuable mathematical rep-
resentation to describe the kinetics of each type of adsorbent. Form the existing studies, exponential curves are
typically used to represent the time to half CO, saturation and the time to 90% CO, saturation of the adsorbents.
Thus, both can be easily extracted from the adsorption isotherm. When only graphical data are available and no
numerical information is provided in the text, validating these graphical data becomes challenging. Therefore, by
calculating some time data using kinetic models that exhibit a strong fit to the experimental results (R? > 0.98), we
can assess the accuracy of the data extraction process by comparing the extracted graphical data to the calculated
values. However, only 7 out of the 52 selected articles presented adsorption kinetic models with fully specified
parameters that demonstrated a coefficient of determination (R?) from 0.970 to 0.999. The reported kinetic models
from all seven articles are summarized in Table 3. Three out of the seven cases reported only kinetic parameters
without the full adsorption isotherms®-%%. The time to saturation capacity and the time to reach 90% CO, saturation
were calculated based on the the Avrami model, the fractal-like pseudo-first-order model and the double-exponential
model provided in those three studies. The remaining four out of the seven cases reported both the adsorption iso-
therms and kinetic models. The time parameters were derived from the pseudo-second-order model and the Avrami
model and were then compared to the extracted graphic data from the adsorption isotherms in those four cases for
data validation. The parameter g_ is the CO, capacity at equilibrium and g, is the adsorbed amount at a given time.
The adsorption time (f) can be calculated by rearranging most equations to solve for t or by using the fsolve function
in Python’s SciPy package. The detailed calculations are provided in Table S6 (see supplementary xlsx file).

Extraction of graphical data. The graphical data were extracted using WebplotDigitizer, a widely used data
extraction tool in previous research®. For example, Aditya et al. used WebplotDigitizer to extract critical TGA
trace temperatures corresponding to CORE MOF 2019 structures from 1,886 articles®®. Yuan et al. also use it for
data collection of biomass-derived porous carbon adsorbents for CO,%. In this dataset, the operational parameter
features were extracted from approximately 450 figures, including scatter plots and bar charts for amine efficien-
cies and CO, capacity, bar charts for cyclic stabilities, and exponential curves for kinetic studies. The most distant
data points on the two axes were selected to calibrate the diagram for the highest possible accuracy. The time to
half saturation and time to 90% saturation, derived from the pseudo-equilibrium CO, uptake capacity, were iden-
tified on the y-axis to determine the corresponding time on the x-axis in each coordination diagram.

Experimental measurement of number averaged molecular weights.  Molecular weight is correlated
with the viscosity of the polymer and is a straightforward input that can be easily used and understood by scientists
and engineers across all chemistry disciplines. For polyamines, the reported molecular weight can be either the
weight averaged molecular weight (M,,) or the number averaged molecular weight (M,,). Most studies report the
value provided by the vendors. In some cases, when polyamines are synthesized in a specific study, M, is reported.
Those reported M, values were recorded in the dataset directly. The M, value is required to obtain the degree of
polymerization for amine content estimations. However, some articles only provided the weight-average molecular
weight M,, of polyamines as reported by vendors, with the M, values missing. The polyamines referenced in these
studies include branched PEI with molecular weights of 1200, 1800, and 10,000 Da purchased from Alfa Aesar, as
well as branched PEI with a molecular weight of 600 Da from Adam and Aladin (Fig. 4). To avoid bias in the dataset,
the M, values of these polyamines were meaured using gel permeation chromatography (GPC) in this study. The
GPC of the branched polyamines were performed on a Waters 1515 system equipped with a refractive index detec-
tor (RI-2414) and PL MIXED 7.5 x 50 mm guard and PL MIXED-C 7.5 x 300 mm column. Each polyamine sample
(8 mg) was dissolved in CHCI; (4 mL) and filtered through a 0.22 filter membrane into a 1.5mL vial. The eluent
was CHCI, at 35°C, with a flowrate of 1 mL min~". The system was calibrated with a narrow polystyrene standard.
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Number
Column | Column Heading Type of records | Additional Information
A Support string 1336 Abbreviated support names
B Amine 1 or Additive 1 string 1336 Abbreviated polyamine names
C 1°,2°, 3° Amine Ratio integer | 1336 Reported as ratios
D MW or M, (g/mol) integer | 1336 Reporte'd or measured molecular weight of small amine and
polyamines
E Organic Content on Adsorbent Basis (%) | integer | 1336 Obtained from literatures or calculated from the N content
F N Content on Adsorbent Basis (mmol/g) | integer | 1336 Obtained from literature or calculated
. . . The designation “0” indicates that there is no amine 2 or
G Amine 2 or Additive 2 string 1336 additive 2 mixed with amine 1 in the adsorbent.
. . The designation “0” indicates that there is no amine 3 or
H Additive 3 string 1336 additive 3 mixed with amine 1 in the adsorbent.
The designation “0” indicates that there is no amine 2 or
I Amine 2 or Additive 2 to Amine 1 ratio integer | 1336 additive 2 mixed with amine 1 in the adsorbent. Related
calculations are presented in Table S4
J Additive 3 to Amine 1 ratio integer | 1336 The designation “0” indicates there is no additive 3 added to
the adsorbent.
The designation “0” indicates that there is no OH group
K OH to N ratio integer | 1336 present in the adsorbent. Related calculations are presented
in Table S5.
L BET Surface Area of Solid Support (m?g~") | integer | 1336 Obtained from literatures
M Pore Volume of Solid Support (cm’g ) integer | 1336 Obtained from literatures
N Average Pore Diameters (nm) integer | 1289 ‘(‘),t’)tamed from 1.1te.ratures or estimated based on Formula 12.
-“represents missing data
(0] Relative Humidity (%) integer | 1336 Obtained from literatures
P CO, Concentration (vol%) integer | 1336 Obtained from literatures
Q Flow Rate (mL/min) integer | 1158 Obtained from literatures or calculated
R Adsorption Time (min) integer | 1323 “““represents missing data
S Adsorption Temperature (°C) integer | 1336 Obtained from literatures
T CO, Capacity (mmol/g) integer | 1335 Obtained from literatures
U Amine Efficiency (mmol/mmol) integer | 1335 Obtained from literatures or calculated
v Time to Half Saturation (min) integer | 691 “-represents missing data. Related calculations are presented
in Tabe S6
w Time to 90% Saturation (min) integer | 607 “-"represents missing data. Related calculations are presented
in Tabe S6
X Desorption Temperature (°C) integer | 216 “““represents missing data
Y Weight Loss Stability (%) integer | 53 “represents missing data
Z Capacity Loss Stability (%) integer | 216 “““represents missing data
AA Cyclic Number integer | 216 “-”represents missing data
AB Heat of adsorption (k]J/mmol) integer | 42 “-’represents missing data
AC DOI string 1336 The reference articles corresponding to each data record

Table 4. Descriptions of the dataset of amine-impregnated solid adsorbents containing 28 features and DOI of
the data sources.

Data Records

Data storage and data source. The full dataset on amine-impregnated solid adsorbent for CO, capture
is accessible as an XLSX file at Figshare, a public online repository®’. This dataset contains 1,336 data points
(Number of rows within the Excel sheet) gathered from 52 published articles and supporting information which
results in a total of 29,857 records (Number of cells with available data)*!:43545559.61-6468-110 There are 28 features
(Number of columns within the Excel sheet) to describe each data point, however, these features are not equally
reported. Some operational parameters and DAC performance indicators such as weight loss stability and heat
of adsorptions are often missing. The column name and related information to each column are summarised in
Table 4.

These 28 features were mainly recorded from texts, extracted from figures or derived from equations. There
are approximately 22% of the M, data obtained from GPC measurement and less than 5% of M, data obtained
from literature interoperation or estimations. The feature N content is obtained from both literature and calcu-
lations due to the different reporting methods used in literature (Fig. 3). Data obtained from text and figures has
the highest accuracy followed by data obtained from formulas.

The data source and data processing methods used to construct the database are outlined (Fig. 4). Some
chemical features are contextual and inconsistently reported, but they can be added from PubChem, derived
from molecular structures, or identified from spectroscopic data. For example, some primary, secondary, and
tertiary amine ratios were sourced from peer-reviewed literature!!!. The M,, of LPEI (M,, = 2500 gmol~!)"? and
LPEI (M,, = 25000 g mol )3 were also sourced from existing Literature. The M, of LPEI (M,, = 600 gmol?)
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Distribution of MW(Mn)
Data Source

Distribution of N Content

Data Source Distribution of Additive 2 to

Amine Ratio Data Source
25.8%

26.4%

26.4%
34.89

44.4%

5 0,
Distribution of Capacity 3%

Distribution of OH to N Ratio
Data Source

Distribution of Amine
Efficiency Data Source

Data Source

65.2%

Legend
. Data from Figures Data from Formula 10 and 11
‘ Data from Formula 1 Data from Literature Interpretation/Estimations
Data from Formula 3 . Data from Instrumental Measurement
@ Data from Formula 4 or 7 @ Data from Text

O Data from Formula 8 and 9

Fig. 3 The data source distribution for selected chemical features. The donut charts suggest that most of the
data are sourced from the article texts or extracted from figures. A relatively high percentage of the N content
and the OH to N ratio data are derived from formulas.

was estimated based on the reported polydispersity (PDI = 1.3) of LPEL In addition, the M,, of polypropylene
guanidine (PPG) was derived from the ion peak of mass spectroscopy¥. In other cases, the M, of the pristine
polyamine is known, however, the M, of the product polymer after the epoxidation or guanidinylation reactions
are not reported. The M,, value of the modified molecules is therefore estimated based on the provided NMR
analysis as well as the number of functional groups added to the pristine polyamine®®**. Even though the pro-
cess of obtaining these contextual data is not formative, the exceptional cases are rare in the dataset. We present
all the derived numerical data of these exceptional cases with their corresponding data processing method for
reference in Fig. 4.

Information on chemical features and abbreviated chemical names. Most of the features in the
dataset are numeric data with only four strings to describe the various types of porous solid supports, amines
and additives. A classification of the porous solid used for amine impregnations is provided to explain the strings
listed under the feature “support” (Table 5).

The 31 types of the porous solid supports were classified into 7 categories. Among all the types of solid sup-
ports, SBA-15 and MCM-41 showed the two highest frequencies in the dataset, as they are the standard solid sup-
ports for DAC research (Fig. 5). The hierarchical silica supports and polyresins have been developed more recently.

There are 31 types of amines (Fig. 6) and 20 types of additives included in the dataset (Fig. 7). The structure
information of these molecules is provided for future references.

As indicated by the donut charts and box plots, PEI and TEPA are the most extensively studied amines for
CO, capture which exhibits wide ranges of CO, capacity features (Fig. 8a). Apart from the molecular structure,
the variation in the molecular weight of polyamines should also be considered where specific studies were carried
to see how M, of BPEI influence the performance of amine-impregnated solid adsorbents. BPEI with M, of
600 g/mol from Sigma Aldrich is a commonly used polyamine for CO, capture under various conditions, as
indicated by the donut chart (Fig. 8b). So far, only PEI and TEAP have been used separately with additives. There
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Fig. 4 The scheme for data collection and data derivatization process with selected validation methods and
presentation of the exceptional cases.

No | Categories of the Support | Solid Support Name from the Dataset

1 2D siliceous material SBA-15, MCM-41 (pore-expanded MCM-41), W-CFA-SBA-15 and R-CFA-SBA-15 (coal fly ash derived
stliceous erals wheat like SBA-15 and rod like SBA-15).

MCM-48 with 3D-cubic pore structure, MCM-36, MCF (mesocellular silica foam), MMSN (micro-
mesoporous silica nanoparticles), MMON (micro-mesoporous organosilica nanoparticles), MPS

2 | 3Dsiliceous materials (commercial mesoporous silica: CARIACT G10 HPV, silica-Sipernat 306 and disordered mesoporous
silica), BHMS (hierarchical silica bimodal meso/macroporosity), THMS (hierarchical silica bimodal
meso/macroporosity), SA (silica aerogel), FS (fumed silica), NS (nano silica).

3 Carbonaceous materials AC (activated carbon), CNT (carbon nanotube), CA (carbon aerogel), MPC (mesoporous carbon).

4 | 3D Aluminium oxides Mesoporous ~-Al,O;

5 Polar Resins PREXAD7, PREHP2MG, PREDA201, PREHPD450, MF (meso-macroporous melamine formaldehyde).
6 Non-polar Resins NPREXAD4, NPRED4020, NPREHP20

7 | Zeolite and MOF FAU Zeolite, ZN (zeolite nanotube) and MIL-101(Cr).

Table 5. The categorization and explanation on the strings of porous solid supports.
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PREXAD7
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Silica Aerogel
36 (SA)
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(FS)

Fig. 5 The distribution of types of porous solid supports within the dataset. The internal layer refers to the 7
categories of solid support, while the outer circular crown to all types of solid supports with abbreviated names.

is one instance where TEPA is impregnated with two types of additives onto the solid support, so the additive
“CTAC” is present in a very small portion under the feature “Amine 3 and Additive 3” (Fig. 8¢). These box plots
are used to describe the distribution of the dataset rather than the analysis of the adsorbent properties, since
many of the operational parameters aren’t considered.

Technical Validation

The data collection process was conducted by two lab chemists specializing in DAC research. Consequently, the
datasets primarily focused on the structure and composition of amine-functionalized adsorbents, as well as the
CO, capture performances of powder adsorbents at a milligram scale. Interaction with GPT-4 was employed to
assess the completeness of the data source. Additionally, the data derivatization process helped identify human
errors and typos in the Excel file. The data used for validation, along with a draft dataset from the data collection
processes, is presented in Tables S7, S8.

Validation of the extracted and derived data. This section presents the percentage errors (1.3%~20.8%)
that are calculated by comparing the extracted or derived data to the data provided in the text. The percentage
error reflects the inaccuracies of different data processing methods. In addition, it also indicates the potential
errors in the data obtained from the same data extraction or derivatization method. A considerable number of
data points originate from figures within the articles (Fig. 3). Nonetheless, a substantial portion of the graphical
data was presented solely in graphical form, rendering these datasets unverifiable. In addition, the data from dot
plots tend to be more easily extracted than the line graphs and bar charts. Thus, the data points from different
types of figures are validated separately. The instances where the data are presented in both graphical and numer-
ical forms were compiled to calculate the errors associated with the data extraction processes (Table 6). The dot
plot is primarily utilized for presenting data on CO, capacity and amine efficiency, and it is used less frequently
to present stability data.

The time to half saturation and the time to reach 90% saturation data extracted from the exponential curves
can be validated by comparing them with the calculated values from the adsorption kinetic models (Table 3).
Notably the kinetic model can only be used for validation when it is strongly fitted to the experimentally meas-
ured adsorption isotherm. Although the coefficient (R?) of the model exceeds 0.99 which indicates an over-
all strong fit, it merely signifies the average precision of the kinetic model in characterizing the experimental
adsorption process. The discrepancies among specific data points remain possible. Nonetheless, the comparison
between the data extracted from exponential curves and the data calculated from kinetic models still provides
an indication of the reliability and chemical significance of the extracted data. The extracted graphical data and
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Fig. 6 The molecular structure of amine 1 in the dataset. The primary amines are highlighted with orange and
the hydroxy groups are highlighted with blue.

the data calculated from kinetic models from 4 out of the 52 articles were utilized to determine the percentage
error associated with data extraction from the line graphs (Table 6)7477104106,

The N content is primarily derived based on the theoretical moles of N atoms from each of the polyamines
and small amines. Since the molecular structures of these molecules are known and most of the organic content
data are provided, the N content of each data point can be easily obtained with reasonable accuracy (Table 6).
The estimated value was validated by randomly selecting a dataset with reported N content or N content cal-
culated from Formula 3 and comparing it with the N content derived from the molecular structure of amines
within the randomly selected dataset (Formula 4 or Formula 7).

During the data collection we noticed several articles didn’t report the OH to N ratio when OH group is pres-
ent, however, the presence of OH group is known to provide positive impact on the amine efficiency, adsorption
kinetic and the optimal desorption temperature of adsorbents”. Therefore, the OH to N ratio is derived from
the original articles. As a drawback, the number of articles in mixed amines and additives are limited. Only three
cases reported the N to OH ratio, so the reliability and accuracy of the OH to N ratio is validated with a small
dataset (Table 6)7>7681, The OH to N ratio within those studies were calculated using Formula 10 and Formula 11
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Fig. 7 The molecular structure of the additives (additive 1 to additive 3) in the dataset. The primary amines are
highlighted in orange, secondary amines are highlighted in yellow and hydroxy groups are highlighted in blue.

and then compared with the reported data. Even though the size of validation sample is small, the absolute and
percentage errors obtained can still suggest the correctness and reliability of the strategy to obtain the OH to N
ratio.

The average pore diameters for pristine supports were estimated from 12 articles using Formula 12. While
the formula is applicable to solid supports with assumed cylindrical pore geometry, the mathematical relation-
ship cannot accurately represent the exact geometries of silica supports from various sources and preparation
conditions. To assess the associated percentage error, we identified 7 articles that reported average pore diame-
ters based on assumed cylindrical shapes. The average pore diameters from these articles were calculated using
Formula 12 and compared to the reported values, resulting in an average percentage error of 20.8% (Table 6).
Although this percentage error is relatively high, the estimated pore sizes remain within an acceptable range for
both commercial and lab-made SBA-15, MCM-41, and MCM-48.

Overall, the percentage errors suggest a reasonable accuracy for the method used to obtain the final dataset.
The errors for kinetic data are probably due to the inaccuracies in the kinetic models under different operational
parameters. These inaccuracies lead to more deviations when compared to the plotted measurement data, and
consequently, higher percentage errors when comparing the model data with extracted data from the plot. When
there is a noticeable difference between the extracted experimental data from the plot and the model data, the
extracted experimental data from the plot is retained within the dataset. In addition, most of the stability data
(percentage loss in adsorbent weight and percentage loss in CO, capacity) were obtained from bar graphs. There
are limited data from the text to validate the accuracy of extracted numbers from the bar graph, however, many
of the stability data were reported in a rounded number or reported as “no significant reduction in the CO,
capacity of the adsorbent.” It also suggests that inaccuracies in the data extraction process have less influence on
the actual stability of the adsorbent.
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Fig. 8 The donut charts and box plots present the distributions of amines and additives used for the
impregnation of porous solid supports in the dataset and their corresponding CO, capacities. (a) The
distribution of amine types (donut chart) and the distribution of CO, capacity data for each amine type (box
plot). (b) The distributions of M,, values for BPEI (donut chart) and the distribution of CO, capacity data for
each M, value (box plot). (c) The percentage for different types of additive 2 and additive 3 (donut chart) and
the distribution of CO, capacity and amine efficiency for all combinations of amines and additives within the
dataset (box plot).

Validation of the dataset via statistical analysis. The statistical analysis not only demonstrates the
general information and relationship within the dataset but also identifies the outliers and human errors. The
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Descriptions Sample Size | Average Percentage error
The data extracted from scatter plot 205 1.3%

The data extracted from line graph 92 6.1%

The estimated N content 167 2.7%

The estimated OH to N ratio 12 3.1%

The estimated pore diameters 12 20.8%

Table 6. The average percentage errors for the comparisons between the extracted graphical data or derived
data with the data reported in texts.

data cleaning process and statistical analysis were carried out with Python and generally involved the following
steps: 1) Check the empty cells within the dataset. 2) Check the number of distinct data points and their frequency
in each feature. 3) Check the presence of data with frequency lower than 10 for each feature.4) Check for the
expected match between data points and features. In this way the outliers can be identified and corrected man-
ually. The statistical analysis was conducted by three data scientists to check the technical reusability of the data.
The data cleaning process was also checked several times before the final analysis.

This dataset included the DAC performance of amine-functionalised solid adsorbent for the first time and
the performance is expected to be distinct from high-concentration CO, capture. Three defined CO, concen-
tration ranges were plotted against each of the six DAC performance indicators in a violin plot (Fig. 9a). The
extreme values indicated by the boxplots and violin plot were checked manually. Notable, the recently devel-
oped amine-functionalised solid adsorbents adopt the highest CO, capacity at 5.8 mmol CO,/g under DAC
conditions (0.04vol% of CO,) which is comparable to the CO, capacity under flue gas conditions (15~25vol%
of CO,). The distribution and range of CO, capacity are generally in agreement with the amine efficiency sug-
gesting the reliability of the database. The violin plot of CO, concentrations against the time to half saturation
showed an extreme maximum at 75%~100% volume of CO, (770 min). In general, the maximum value of the
half time should be around one third of the time to 90% saturation. This value was checked, and the original
study did not provide the time to 90% saturation of the adsorbent. The violin plot of CO, concentrations against
the stability of the adsorbent, indicating weight loss stability (%) of the adsorbent under flue gas conditions,
has not been reported thus far. While CO, capacity loss stability (%) is more frequently reported, the adsorbent
under DAC conditions showed less percentage loss compared to other conditions. This result may also be influ-
enced by temperature and the number of adsorption-desorption cycles in the actual experiments.

Following the previous analysis of the private database of amine-functionalised SBA-15 and MCM-41 by
Yildiz et al., the CO, capacity was plotted against the percentage quantity of primary, secondary and tertiary
amines within the solid adsorbents (Fig. 9b)?’. Based on the given information, the private datasets contained
different ranges of data and data sourced from different time periods. However, the box plots from the previous
database showed maximum values that are similar to the violin plots. Both plots suggest that the presence of
primary amine contributes to high amine efficiencies. The violin plot also indicated the secondary amines is
in comparative quantity to primary amines contributing to the overall amine efficiencies. This statistical result
may be influenced by the instrumental method and the actual chemical qualities in use. Nonetheless this com-
parison has validated the reproducibility of these types of datasets and demonstrated their potential for the
analysis of amine-functionalised solid adsorbents. The violin plots also illustrate the data distribution of the
textural properties of solid supports against CO, capacity (Fig. 9¢). It suggested that the solid support with pore
volume between 3 to 6 cm®/g and pore size larger than 20 nm provides positive effects to the CO, capacity of the
adsorbents.

A correlation heatmap was generated to illustrate the relationships among the numerical features within
the dataset (Fig. 10a). The heatmap reveals the direction and relative strength of correlations between pairs of
numerical features; however, no strong correlations with R? values exceeding 0.99 are observed. Generally, some
features with known correlations exhibit R? values above 0.70, such as organic content and CO, capacity, as
well as CO, capacity and amine efficiency. In contrast, some expected correlations, such as those between CO,
capacity and humidity, are not evident. The weak correlations among the selected numerical features may be
influenced by non-linearities and multicollinearity among the parameters, as the heatmap only indicates linear
correlation strengths between pairs of variables. Based on the strongest observed correlation, represented by an
R?value of 0.79, a scatter density diagram was created to plot amine efficiency against CO, capacity for different
CO, concentrations (Fig. 10b). The dot plot data tend to exhibit a linear relationship, with some exceptions.

The interaction of CO, with amine-functionalised adsorbents is affected by multiple chemical and physical
processes, including adsorption kinetics, thermodynamics, and specific interactions between CO, and func-
tional groups. The strength of correlations in complex chemical properties may not be accurately observed
due to the intercorrelation of many factors, complicating the determination of the independent effects between
individual variables. More complex correlations should be further explored through modeling studies or explan-
atory machining learning with lab-based investigations in future research!''%. For example, Serna-Guerrero et al.
examined how desorption pressure (PD), desorption temperature (TD), purge gas flow (FD), and their respec-
tive interactions affected the performance of the adsorbent through a statistical analysis utilizing a 2 factorial
design. The statistical model used enables objective assessment of the impact of each parameter and allows for
the analysis of interactions that may not be apparent from experimental observations.

Furthermore, the weaker correlation strength may be influenced by limitations within the dataset, such as its
size and diversity. For instance, the correlation between weight loss percentage and pore size of the pristine solid
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Fig. 9 Violin plots of selected adsorbent characteristics and operational parameters (CO, concentrations)
against adsorbent performance indicators. (a) The ranges of CO, concentration against six features of
performance indicators (CO, capacity, amine efficiency, time to half saturation, time to 90% saturation, weight
loss stability (%), capacity loss stability (%)). (b) The fraction of primary, secondary and tertiary amines within
adsorbents against amine efficiency. (c) The textural properties of pristine solid supports against CO, capacity.

supports appears relatively strong, which is rarely observed in experimental studies”®. With only 53 data points
for weight loss capacity, the dataset may not adequately capture the full range of variability, leading to potentially
misleading correlations. Additionally, since this dataset was manually compiled from various research works,
inaccuracies in the measurement or reporting of parameters can introduce noise, obscuring true relationships.
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Fig. 10 Correlation heatmap of features within the dataset. (a) The heatmap illustrates the general strength of
linear correlations among each numerical feature in the dataset. (b) The scatter density plot of amine efficiency
against CO, capacity.

The variables may also be influenced by unobserved factors or interactions not included in the heatmap analysis.
These considerations highlight the importance of dataset quality and comprehensiveness for effectively applying
Al technology in material science.

Comparisons with a private dataset. There is only one other manually curated amine-functionalized solid
adsorbent database containing reported experimental values, as introduced in the 2019 research by Yildiz et al.¥’.
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Variables of Dataset Yildiz et al. Dataset | This Dataset
No. of data source 28 publications 52 publications
No. of adsorbent class 2 1
No. of solid support 2 31
No. of amine 17 31
Temperature rang (°C) 0~100 —30~100
CO, partial pressure range (bar) 0.01~1 0.01~1
Relative Humidity 0%~78% 0%~100%
No. of DAC performance indicators | 2 6
1) OH to N ratio
2) Organic Content 1) Amine density
Excluded features 3) N Content 2) Calcination
4) Types of additives | 3) Remaining pore volume
5) BET surface area

Table 7. The general comparison of our database with the database created by Yildiz et al.

Since the dataset is private, it is not possible to make a statistical comparison with the dataset from this work.
However, a contextual comparison would further suggest how the database from this study can contribute to
the existing one (Table 7). The major difference between the two datasets is that Yildiz et al’s dataset contained
amine-functionalised solid adsorbent made from impregnation (Class I) and grafting (Class IT) methods.
This dataset is an expansion with a specific focus on the adsorbent made from the wet impregnation method
which generally shows better performance under DAC conditions'*. The other major differences would be
the types of amines and supports involved in the database. Yildiz et al’s dataset only contained two solid sup-
ports, the SBA-15 and MCM-41. It allows efficient classification and comparison for the preparation methods
of amine-functionalised solid adsorbent. Our dataset incorporated a diverse type of solid support, amine and
additive which highlights more on its potential for prediction and selection of ideas from scientists. Finally, our
dataset focuses on the performance of amine-impregnated solid adsorbent from 0.0004 bar to 1 bar of CO, partial
pressure, enabling the exploration and evaluation of adsorbents for the negative emission DAC technology.

Usage Notes

Incorporation into machine learning models. To present a transparent process for the usage of this
dataset and to prove its usability, we have trained a Random Forest model (RF) and an Extreme Gradient Boosting
model (XGBoost) using this dataset. The code for data cleaning process and training of the ML model is uploaded
on Figshare. Following the common practice’¢, the input includes chemical features of amines, textural proper-
ties of the pristine support and operational parameters. The CO, capacity was used as an example output. We con-
struct a 10-fold cross-validation experiment for each ML model. The values of root mean squared error (RMSE)
of RF and XGB are 0.42 mmol/g and 0.53 mmol/g, respectively. These values are comparable with the previously
reported RMSE value of 0.68 for an XGB model trained from a database of biomass waste-derived porous carbon
for CO, capture®. Moreover, the relative root mean squared error (RRMSE) values for RF and XGB are both 0.02,
indicating that accurate machine learning models can be trained using our dataset.

It is encouraged to explore the initial ideas for the engineering of any amine-impregnated solid adsorbent
using the trained ML model. The input data can be easily entered into the model for a quick discovery of adsor-
bent performance, ranging from DAC conditions to pure CO, conditions. Apart from the provided machine
learning models, the dataset still contains statistical value and provides other research opportunities. In addition,
the dataset can be expanded and upgraded by experimental results or data generation technologies in the future.

Limitations and outlook. The dataset provided in this study presents several potential limitations that
should be kept in mind for future research. Firstly, there are potentail bias from the data collection methods, as
this database is derived from previous literature. Consequently, some selected chemical features may not fully
capture the complexities of real experimental settings, particularly as certain features related to instrument con-
figurations have been excluded. Furthermore, many samples are subject to experimental and measurement errors.
Notably, standard errors associated with the measurement of DAC performance indicators are inconsistently
reported and are not accounted for within the dataset. The errors inherent in our dataset may be comparable to
those encountered under actual experimental conditions. Given both the limited data size and chemical features,
accurately predicting specific values from this dataset poses significant challenges. Thus, it is imperative to explore
how each feature within the dataset may be influenced by experimental measurements and to develop method-
ologies that align literature-based datasets with real-world conditions. The applications of AI technologies for
information extraction and simulation techniques for data generations would further enrich the datasets, avoid
human errors and bridge the gap between lab research and data scientists.

The diversity of chemical descriptors significantly affects the accuracy and capacity of artificial intelligence
(AI) models*. While this dataset facilitates the exploration of time-saving ideas in laboratory settings, the selected
features may limit the discovery of adsorbents with novel textual properties or a wider range of polyamines. As
a result, models trained on this dataset may be restricted in generative Al applications, relying primarily on the
patterns present in the data. In addition, the representation of solid supports and amines could extend beyond
the current textual formats to include Simplified Molecular Input Line Entry System (SMILES) notation or other
novel descriptors, promoting innovation and enhancing understanding of amine-functionalized adsorbents.
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The selected chemical features may not fully capture the adsorption phenomena of amine-impregnated
adsorbents, overlooking key thermodynamic, kinetic, and economic parameters. Including these factors would
facilitate a more comprehensive analysis of the adsorbents’ performance and viability in practical applications''.
The absence of energy-related data limits the dataset’s utility for simulation studies and the engineering design of
DAC adsorbents. Consequently, the trained machine learning model may not be suitable for selecting scalable
adsorbents for DAC applications. Given the complexity of CO, adsorption across various scales, the chosen
chemical features also impact on the results of correlation studies aimed at elucidating the mechanisms associ-
ated with amine-impregnated adsorbents.

Despite these limitations, this dataset highlights the potential for integrating machine learning with experi-
mental research data, underscoring the necessity for uniform data reporting and the significance of small data-
sets. Interdisciplinary research efforts are essential for effectively applying Al technologies to the development
of amine-functionalized adsorbents.

Code availability
The code for statistical analysis and usage guide was uploaded on Figshare together with the dataset.
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