Efficient Zero-shot and Label-free Log Anomaly
Detection for Resource-constrained Systems

Zuohan Wu*, Jiachuan Wang', Libin Zheng!, Yongqi Zhang*, Shuangyin Lif, Lei Chen*¥
*The Hong Kong University of Science and Technology (Guangzhou), China

zh.wu@connect.hkust—-gz.edu.cn,

TUniversity of Tsukuba, Japan
!Sun Yat-sen University, China

§South China Normal University, China
9The Hong Kong University of Science and Technology, Hong Kong SAR, China

Abstract—Logs, generated from modern computational sys-
tems such as cloud servers or DBMS, are the primary indicator
of system states and thus have drawn significant attention from
researchers. One of its key tasks is log anomaly detection,
aiming to discover anomalous signals that can subsequently imply
errors in systems. Conventionally, the major challenge of such
a detection task is the insufficiency of well-labeled logs, which
require unaffordable human resources. To tackle this issue, recent
works have adopted the large language models (LLMs) as zero-
shot label-free log anomaly detectors. However, these solutions
necessitate direct deployment of LLM instances for downstream
tasks, incurring substantial computational costs. Such costs
limit their applications in resource-constrained scenarios, which
motivates us to reposition the LLMs from direct detectors to
training assistants and propose MaidLog. Specifically, MaidLog
comprises an LLM-assisted pseudo-labels assignment workflow
that automatically generates high-quality labels at training,
enabling it to run entirely without manual labels. Based on them,
we propose a lightweight detector designed for generalizability,
where a well-trained detector is even applicable to downstream
systems without any post-training. Once the training is finished,
the downstream detection is efficient and only detector-based,
without any involvement of LLM. Extensive experiments show
that MaidLog effectively handles challenging real-world sce-
narios. With only a few unlabeled entries, MaidLog achieves
comparable performance with a 25,000x speedup over SOTA
LLM-centric solutions in out-of-domain systems, demonstrating
its applicability on resource-constrained systems.

Index Terms—Anomaly Detection, Log Management

I. INTRODUCTION

Logs generated from computational systems lay the fun-
damentals for modern Development & Operations, which is
now attracting significant interest from researchers. In the
domain of log data management, typical tasks can be coarsely
categorized into four pipeline levels: logging level [1]-[3],
processing level [4]-[12], organization level [13], [14] and
application level [15]-[20]. One of the important tasks at the
processing level is log anomaly detection, which identifies
anomalous log data as indicators of system malfunctions.

In real-world applications, since a delay in discovering
the system’s error would cause severe economic loss, an
anomalous log requires timely detection. Several early re-
search solutions have been proposed under relatively ideal

TJiachuan Wang is the corresponding author.

yonggizhang@hkust-gz.edu.cn
wangjc@slis.tsukuba.ac.jp
zhenglb6@mail.sysu.edu.cn
shuangyinli@scnu.edu.cn
leichen@cse.ust.hk

settings [21]-[26]. Specifically, in these conventional frame-
works, logs first undergo parsing, a preprocessing step to
remove variables (e.g., hash strings), before being categorized
into event templates. Sequentially, these templates are fed to
a detector that generates its judgments. This pipeline relies on
two key assumptions: (1) strict assumptions of consistency
to ensure reliable parsing and downstream detection, and
(2) massive label requirements for training the detector.
However, these assumptions are often unrealistic in practice,
limiting the broader adoption of such methods.
Improvements have been undertaken to address the afore-
mentioned issues through two lines. The first line concerns
accommodating unstable and evolving systems for (1). By ap-
proximating log parsing [27], [28] or eliminating the necessity
of parsing [29], [30], these methods treat logs similarly to
natural languages and achieve high flexibility for diverse and
changing systems. In the second line, new solutions aim at
performing unsupervised [27], [31], [32] or semi-supervised
learning [33], decreasing budgets on anomalous labels for
(2). However, these solutions still exhibit generalizability
deficiencies, as they typically assume logs always resemble
those in the training set. In scenarios such as newly deployed
servers or updated running servers, they naturally lose validity.
Although several studies employ transfer learning [34], [35] or
meta-learning [36] to address this drawback, they still require
substantial training samples from new environments or fail
when facing significant inconsistency. As both label and con-
sistency issues pertain to model training, we categorize these
non-LLM solution limitations as training-phase limitations.
Fortunately, advances in large language models (LLMs)
from natural language processing demonstrate potential
to overcome previous limitations. Pioneering studies have
demonstrated LLMs’ significant potential in log analysis [5],
[30], [37]-[42]. The majority of them employ prompt engi-
neering [41] or fine-tuning [30], [40], [42] alone with centric
LLMs to comply with strong generalization and stability in log
analysis. For example, LLMs can perform zero-shot (without
in-domain samples) and label-free (without labeled data)
anomaly detection for online systems using natural language.
Despite some training-free scheme with LLMs that can skip
the above training-phase limitations, directly applying LLMs

Motivation (Section 1)

MaidLog (Section 3.1)

Task (Section 2)

(" :) Sources Domains
LLMs-centric methods | Few data w/o label I—-> LLM Mislabel Verifier Domain A
Identification System Init Started at Oxab
LLMs-assisted L System Init Failed at Oxab
— 3 label assignment Augmented
1 Zero-shot Few data] (Section 3.2) Generation
: Label-free requirement @*_ -
e A . Label cache Train ‘ Gap
fEiSEseeeepeseseecsansmry R e e e e
i M Comquational :] Generalizable Discriminator
1| Lightweight efficiency : detector *
e - - (Section 3.3) Ensemble heads
________ t P v
1
Non-LLMs methods i Inference results ! | System Individuals | | Invariant Features |
- - y,

Fig. 1. Overview of MaidLog. The left side introduces our motivation in MaidLog to combine advantages from both LLM-centric and Non-LLMs methods;
The middle part summarizes the architecture. MaidLog comprises an LLMs-assisted label assignment (Section III-B) to acquire anomalous labels on unlabeled
training data, and a detector with generalizable designs (Section III-C) for zero-shot detection on target systems; The right side overviews the task, where
unlabeled log entries in source systems (i.e, domains) are available for training a detector for anomalous identification on unseen target system.

still encounters the following inference-phase limitations:

1) Efficiency. Existing LLM-centric solutions demand calling
LLMs for each inference, causing an unfeasible compu-
tational budget and latency, especially for users on light
systems/applications like edge devices.

2) Effectiveness. Naively adopting LLMs for anomaly identi-
fication can only yield suboptimal results [42], [43], since
logs are different with the training corpora. Some extant
LLM-centric solutions have to furnish LLMs with more in-
domain examples, yet are inapplicable when encountered
with data scarcity [30], [40], [44]. Moreover, the selection
of these examples is non-trivial, and inappropriate demon-
strations may degrade performance.

3) Bias. LLMs exhibit inherent biases due to varying architec-
tures and training corpora, leading to divergent behaviors
across model instances. Prompt sensitivity further worsens
this vulnerability, as outputs may differ by prompts. Con-
sequently, identifying both optimal prompts and the most
appropriate LLM instance remains challenging.

Given both training-phase and inference-phase limita-
tions, we are motivated to decouple training and inference
processes while combining the strengths of LLM-centric and
non-LLM approaches. In this paper, we propose a novel
solution named LLMs-assisted Log (MaidLog) to perform
anomaly identification with high efficiency and minimal data
requirements. As shown in Figure 1 (left), MaidLog focuses
on dual functionality: maintaining advantages of LLM-centric
methods (zero-shot and label-free operation) while providing
lightweight and real-time inference as non-LLM solutions.
Specifically, (1) for training-phase limitations, we employ
LLMs to automatically generate massive labels. Then, those
labels will be augmented and utilized to train a lightweight
detector without consistency assumptions. And, such detector
makes the inference phase LLM-free, thus has high effi-
ciency; (2) in terms of the inference-phase limitation, LLM
in MaidLog would only be utilized for pseudo-label inference
during the detector’s training, enabling further chances to
post-improve before the corresponding training is applied. We
further introduce an iterative calibration workflow to prevent

the above detector from inheriting the effectiveness and bias

issues. In summary, our contributions are as follows:

« We propose a novel framework, named MaidLog, to perform
efficient and effective log anomaly identification in a zero-
shot label-free manner in Section III-A by decomposing
training and inference runtime.

e We propose an LLM-assisted pseudo-labels generation
framework for logs, tackling the limitation of label require-
ments for non-LLM solutions in Section III-B.

« We propose a generalizable and efficient detector for infer-
ence in Section III-C with the unique nature of logs.

« We conduct extensive experiments in real-world datasets to
demonstrate our motivations and designs in Section IV.

II. PROBLEM ANALYSIS
In this section, we will introduce the existing problem
settings and the unsolved challenges.

A. Preliminaries

Logs are generally organized in lines. We denote the i-th log
line as x;, treating it as a natural language sentence. In reality,
logs are sequentially arriving, and the demand is to classify
whether the system runs normally or not with the logs it
generates. Well-designed logging tools enable logs to precisely
reflect system states, thereby reducing the task to identifying
anomalous logs [45], [46]. This problem can be viewed from
two distinct perspectives depending on the granularity:

« Log anomaly detection: This task is to diagnose anomalies
by full sessions/sequences. Given an ordered batch of logs,
the objective is to provide a single answer to the total batch,
indicating whether or not there is an anomaly.

o Log anomaly identification: A recent trend [47], [48]
aims to acquire fine-grained hints from logs, leading to the
formulation of this sub-task. Given an ordered batch of logs,
this task requires a line-by-line anomaly identification. Our
primary focus is on this task as it has finer granularity.

As outlined in Section I, we aim to tackle the most realistic
settings, specifically the zero-shot label-free log anomaly
identification. It further imposes that (1) no entry and label
from target systems (zero-shot) and (2) only entries but no

label from source systems (label-free) are available during
method designing and training. Here, target systems refer
to those in downstream inferences, while logs from source
systems are already established and documented as prior
knowledge. Technically, each system with distinct data and
label distributions is referred to as a domain. In particular,
systems are interchangeable with applications since domains
are logical models. In common practice, a system includes vast
applications like databases, a Java backend, etc. Despite their
various logging features, they collectively form a complete
application, inspiring a multi-domain modeling.
Additionally, as previously mentioned in Section I and
prior studies [27]-[29], [35], [40], [47], [49], logs may be
streaming from multiple cooperative applications concurrently.
Consequently, temporally proximate logs may originate from
different application sources. This deviates from conventional
settings, where researchers presume that the log sequences
from the same source can be directly organized by time
windows or sessions. Moreover, session organization varies
significantly across instances, even within a single system. As
MaidLog is desired to be a sufficiently generalizable solution,
we avoid the above system-dependent factors and prefer the
following standalone entry-level anomaly identification formu-
lated in Section II-B. [48] also adopts such settings for similar
reasons, as we will discuss and dive deeper in Section VI.

B. Problem formulation

Referring to log sources (e.g., some applications) as do-
mains where each of them retains a distinct joint distribution of
logs and anomalous labels, ny source domains in D* and any
target domain(s) D! are given. In this challenging setting, the
training samples consist solely of n; unlabeled log lines from
each source domain D7, formalized as D* = {{x?};2,]j =
1,...,n4}. The objective is to identify anomalous log lines in
D' = {(zt,y!)} 7, with a detector trained exclusively on D*.
Formally, our task is to obtain the optimal parameters W* in
a parameterized detector/classifier cls(-) with and only with
D to detect anomalies in D! as

W* = argmaxE,: ,o)pt [P(cls(z); W, D%) = y!)] , (D
W ir9q

where y! = {0,1} denote z! is normal (0) or anomalous (1),
respectively, as the right side of Figure 1.

C. Resource constraints

To contextualize the design of MaidLog, we first outline key
“resource constraints” encountered in real-world deployments:

« Computational resource constraint. Logs originate from
diverse systems, ranging from high-performance computing
(HPC) clusters to lightweight edge devices (e.g., smart
watches, routers). A widely applicable log anomaly detec-
tion method should function as an auxiliary module that
requires neither GPUs nor high-performance CPUs, and
must maintain low computational overhead.

« Data resource constraints. As noted in Section I, log data
is often sparse. An effective framework should operate in

a zero-shot manner without large volumes of in-distribution
data, and should be label-free to avoid manual annotation.

Given the strictness of these constraints, balancing detection
effectiveness and computational efficiency is critical for prac-
tical log anomaly detection.

III. METHODOLOGY

In this section, we outline MaidLog. The target of our task
and the key ideas of MaidLog are introduced in Section III-A.
Then, the pseudo-label generation framework and the detector
are proposed in Section III-B and Section III-C, respectively.

A. Principles in MaidLog

Before discussing the details of MaidLog, we will first
identify some unique attributes of the task. Training a detector
on D?* appears to be a straightforward unsupervised anomaly
detection task, but it becomes a peculiar case in our situation.

What is an anomaly. From the aspect of general anomaly
detection, anomalies are defined as those different from the
training set. By this definition, representative unsupervised
solutions [27], [31], [50] attempt to induce patterns in training
sets and define out-of-domain testing samples as anomalous.
These methods operate under the assumption that there is
no significant distribution shift between training and testing
data. However, this assumption is impractical in real appli-
cations, such as when the systems are intensively evolved or
cold-started [28], [29], [47]. Furthermore, the out-of-domain
anomaly detection setting requires that all training samples be
strictly normal. This assumption does not hold in our task or in
practice, and its violation leads to collapses, as demonstrated
in Section IV. Even if one could remove all samples with
anomalous labels, the sample efficiency would still signifi-
cantly decrease as an entire category is excluded [49].

Thereby, supervised methods are more suitable for the task,
although we do not initially have labels with D?. Fortunately,
the emergence of LLMs provides a promising alternative so-
lution. As demonstrated in recent LLM-centric solutions [40],
[41], LLMs can serve as experts and generate pseudo-labels.
Although this approach is efficient since it requires no human
intervention, the results are not sufficiently accurate. To en-
hance the quality of pseudo-labels, we introduce an iterative
calibration mechanism in Section III-B.

Using the high-quality pseudo-labels obtained, we propose
a sophisticated detector tailored to log characteristics in Sec-
tion III-C, designed to maximize generalization from D° to
downstream D‘. The complete architecture of MaidLog is
illustrated in Figure 1 (center).

B. Pseudo-labels assignment

Recall that LLMs cannot reliably provide high-quality labels
through simple zero-shot approaches (e.g., direct question
answering), as demonstrated in [40], [41]. Thus, a more
sophisticated assignment framework is needed to provide
precise training signals and prevent errors (e.g, biases) from
accumulating to inherit in the detector. To meet the above
requirement, we first consider the following two insights
regarding the weakness of LLM:

« LLMs as black boxes. It is challenging to ascertain how
exactly LLMs identify anomalies. Although sophisticated
prompts can establish certain anomaly standards, the in-
teraction mechanisms between LLMs and prompts remain
opaque to developers.

« The absence of domain knowledge. In general, LLMs lack
specialized training on log data and possess limited domain-
specific knowledge about the relevant log domains.

The first limitation hinders the evaluation of generated
labels. Although LLMs are too complex to be analyzed,
conventional parametric classifiers (e.g., the model in Sec-
tion III-C) can extract more informative measurements from
losses and logits. This motivated the implementation of a
neural “verifier” to evaluate the labels generated by LLMs.
Meanwhile, retrieval-augmented generation has shown poten-
tial for addressing the second limitation [40], [44]. Specifically,
providing LLMs with exemplars can guide them to generate
better assignments than from question-only queries.

In light of the above observations, we propose two key
mechanisms: a mislabel identification mechanism (Section
III-B1) and an augmented generation mechanism (Section
III-B2). In summary, the fundamental idea is to iteratively
discover previously mislabeled samples with the verifier and
subsequently calibrate them by providing more pertinent ex-
amples to LLMs. The detailed workflow will be introduced
later in Section III-B3.

Preprocessing As a deep learning solution, the first step
is to embed input logs, whereby variables (i.e., numbers, IP
addresses and hash-like values) in logs are cleaned by regexes.
Then, the pretrained FastText [51], an efficient and non-GPU
embedding method, is utilized to acquire dense representation
el € R for each log line. Here, d. is a fixed vector length
depending on the settings of FastText. For the sake of brevity,
we attach {e]} to corresponding {z]} to all domains. The
performance of FastText has been validated in RobustLog [28].

Proposed framework The whole assignment process is
illustrated in Figure 2. Mislabel identification starts after the
initial pseudo-labels are generated for all entries by the LLM.
Then, the mechanisms in Section III-B1 will mark which
samples are probably mislabeled (“candidate” D¢) and which
are more reliably labeled (“support” DP), respectively. Subse-
quently, each entry in D¢ will be incorporated with relevant
entries in DP, seeking a better reassignment as detailed in
Section III-B2. The above processes interleave for several
rounds. Finally, all generated pseudo labels saved in the cache
will be summarized into the final outcomes.

1) Mislabel identification: Deriving ideas from learning
with noise [52], researchers have found that noisy labels
(i.e., mislabels) typically obtain larger confusions (e.g., losses)
in the neural classifier (e.g., multi-layer perceptrons). This
phenomenon can be interpreted as the classifier first learning
common features before memorizing individual instances [52].
When incorrect labels constitute a minority in the dataset,
they can be identified by analyzing classifier behavior patterns
based on this phenomenon [53].

Specifically for our task, when using a proper classifier to
train a mapping from entries {x7} to current pseudo labels,
mislabeled samples will not be well-fitted in the early training
stage. They typically exhibit either (a) inconsistency between
the classifier’s outputs and the pseudo-labels, or (b) larger
losses compared to other samples in the same class. Therefore,
we propose to utilize a neural classifier as a “verifier” with two
mislabel identification criteria as follows:

« Disagreement. Based on criterion (a), when the pseudo-
label and the classification result of an entry are inconsis-
tent, it’s potentially mislabeled. A predetermined portion of
entries will be sampled from these entries and marked.

o Confusion. Based on criterion (b), we sort classification
losses within both normal and anomalous categories, respec-
tively, when the pseudo-label and the classification result of
an entry are consistent. A predetermined portion of entries
with top losses are subsequently marked.

Using these criteria, we identify samples meeting at least
one criterion in each domain and class. Due to the log
anomaly’s categorical imbalance, we standardize the marked
sample size across domains and classes to the minimum
observed. The union of selected samples, called “candidates”
D¢ = {{(ef,y])}i}}*, contains labels identified as incorrect
and requiring calibration.

Recall that we need entries with reliable pseudo-labels for
subsequent augmented reassignment. To obtain this reliably-
labeled “support set”, we extract the complement of the
“candidates”, denoted as DP. Specifically, we set a larger
predetermined portion when selecting DP. This ensures DP
contains relatively more reliable labels than D¢, minimizing
the risk that augmented reassignment is misled by noisy
examples incorrectly included in the support set.

2) Augmented generation: To calibrate the candidates D¢,
we employ in-context augmented generation using LLMs
with three distinct prompt types. All three prompts leverage
multiple support samples from DP to calibrate the labels in D°.
Details of the three prompts (augmentations) are as follows:

o Induce. This prompt guides the LLM to induce and learn
patterns from labeled support samples before evaluating the
candidate entry. Particularly, Induce requires both normal
and anomalous examples.

« Filter. This prompt provides only normal support samples to
the LLM, which then filters and determines if the candidate
belongs to the normal class.

o Refine. This prompt augments the LLM by providing tem-
porally adjacent entries as the context for calibration.

Please refer to Section IV-C for concrete augmentation
prompt formats. Hereafter, the remaining challenge is selecting
appropriate examples for “induce” and “filter”. To ensure
robust performance, selected examples must be both reliable
and relevant to each query. The reliability, as described at
the end in Section III-B1, has been satisfied as the examples
would only be selected in the support set DP. Then, to ensure
relevance, we perform KNN retrieval using entry embeddings
e to identify the most semantically similar support samples.

Initial Query ;
== o s Input: Log Data x;

Train

3)

Context Retrieval

(6) (6)

(5) Generation (Section 3.2.2)

[Filter][Induce] [Refine]
L) L) L)

[Disagreement]

Neural
[Confusion] Verifier
(4) Identification]
(Section 3.2.1)
f
Parse Pseudo-labels Supervise
(2) Cache Yl.’ 3)

Fig. 2. LLM-assisted pseudo-label assignment. The assignment process itera-
tively interleaves (5) mislabel identification and (4) augmented generation. In
each round, the neural verifier will identify samples probably with incorrect
pseudo-labels in previous rounds (Section ITII-B1); selected samples will be re-
queried to LLMs, seeking example-augmented reassignments (Section III-B2).
For each candidate entry (embedding e) in D¢, we retrieve the

top-s; support samples from DP using:
top-s (e ¢}) g =t, 2)

and extract the corresponding original log entries {xf} The
sample count s} varies according to the prompting strategy
employed. Finally, we format both the query and retrieved
examples using natural language templates corresponding to
the selected augmentation strategy, then batch them for label
reassignment. Here, a query prompt comprises instructions for
the anomaly identification task, an augmentation prompt (e.g.,
“refine”) with several example entries, and the target entry.
3) Detailed Workflow: Figure 2 depicts the whole process
of the LLM-assisted pseudo-label assignment. After (1) the ini-
tial round of generation, the pseudo-labels are (2) parsed from
the LLM’s responses, and the neural verifier undergoes (3)
supervised training over several startup epochs. Subsequently,
the proposed (4) mislabel identification and (5) augmented
generation processes are interleaved to ensure continuous cal-
ibration. Specifically, (6) depicts the retrieval and organization
introduced in Section III-B2, and a round ends after (7) the
reassignment queries and (2) the results are parsed. Thereafter,
steps (2)-(7) will be repeated until the budget is reached.
Specifically, the verifier adopts the same architecture and
objectives as described in Section III-C. In addition, we
implement pseudo-label caches to aggregate the results from
multiple rounds. For log embedding e, the pseudo-labels
cache will save all the generated labels as Y/ = {(y/,w])}.
While training the verifier, we obtain supervision from:

Yy wiyﬁ)) Pg wiy]

: — —05(+1, 3)
Dy w} Zy,j w} J

where w. will linearly grow as the number of iterations.
The consideration for such designs is to mitigate premature
saturation or later over-calibration, as:

g{ = round (

o The pseudo labels are averaged from all rounds of gen-
erations, ensuring later opposing reassignment (potentially
over-calibration, or noise) will only be in effect after multi-
ple distinct checks. Through that, we expect over-calibration
will be rarer.

o Weights will linearly grow by the number of rounds, en-
abling quick correction in the early and middle calibration
rounds. We believe such a design can prevent the calibration
from being prematurely stuck.

In expectation, these would bring a “convergence” in assign-
ment result when iteration increases, which is also observed
in our experiments. Notably, the LLMs consistently generate
binary labels (i.e., 0 or 1) in natural language, and thus
we align the supervision for the verifier to be rounded as
in Equation (3). Eventually, the pseudo-label caches, which
accumulate labels {Y;} from multiple iterations, provide
supervision for the subsequent detector. As a brief preview, the
verifier will share the same architecture and training process
as the detector, which will be introduced in the next section.

C. Generalizable detector

Once the {Yj} from the above process are available, we
can subsequently train a supervised detector that provides a
categorical answer of normal or anomalous for each log. A
typical objective from Equation (1) is:

argmax [(Z y{z log P (clsw(ez) = t)) , 4

W (el 4)€D® \1=0,1

where ygi =1- ;z}f and y{i = g]i abbreviate the probability of
being normal and anomalous respectively. Here, for each log
embedding e, soft labels are instead utilized to obtain smooth
scores (labels) as 7] = >y wlyl />y wi .

Recall Section III-A, we desire a better generalizable de-
tector to enable zero-shot downstream transferring. Thereby,
as shown in Figure 3, two techniques named domain gener-
alization (DG) and ensemble classifiers (EL) induced by the
nature of logs are subsequently utilized hereafter.

1) Domain generalization: For a zero-shot classifier,
naively adapting Equation (4) is insufficient for generalization
towards target domains [54]. This further requires the detector
to mine common features across various domains rather than
only domain individuals for accessing unseen target domains.

Technically, it proposes a domain generalization task. By
constructing the detector cls(-) as f - g as an encoder-
predictor structure, a general DG framework tries to align
the joint distribution of P(g(e),y) = P(ylg(e)) - P(g(e))
across domains [54]. The productions are a domain-invariant
encoder P(g(e)) and a general head P(y|g(e)), where com-
mon knowledge is decoupled from domain-specific features.
When inferring unseen target domains, the encoder can retain
a common feature space and thus validate the downstream
head. However, such alignment is far from suitable for logs.

Particularly for logs, the conditional distribution P(y|g(e))
is strongly defined by the domain individual and more impor-
tantly, by the users’ interpretation of anomaly. For instance,

Logl System Init Failed at Oxab I Class @ Domain @

|
[fastText Embedder] 'Il?r t;iei:leirrllcge s
1 3
DG Domain-invariant [€-* @ (€~ Domain
Encoder E Discriminator
3 -

Domain-specific Classifiers

-- ¥,
EL ﬁ Head A [Head B][Head C]. .] E b
(for domain A) 1
T T L !

Py
y o
A=
S -

\
’

,-
r'o
A
b .

P
o
\ o
_/

'__
1
1

Ladv

Inference 1) [‘@ Loss @ "C\‘]
\ - 7 \\ _ 7 \\ _ 7
Fig. 3. The framework of the proposed detector. The detector contains
three major components, where a domain-invariant encoder and a domain
discriminator compose the DG. Multiple domain-specific classifiers (EG) are
built on the encoder and output an anomalous score for each entry. Each
domain is mapped to a head during training, while all heads are activated and
the results are weighted by the discriminator during testing.

a warning level log is customary in a developing system,
while it may be deemed unacceptable in a highly available
system. Given that the same log in different systems may
have different semantics, P(y|g(e)) can hardly and should
not be aligned, while enforcing alignments will hinder the
formation of identical and practical P(g(e)). Alternatively,
exclusive alignment on P(g(e)) is sufficient for logs.
Formally, such alignment is to minimize the Jensen-
Shannon divergence (JSD) among source domains as

> ISD(Perpi(9.(€) | [Bnns (900))) . (S)

Di,DieDs

min
w

where ¢ is parameterized by w. This equals optimal in an
adversarial minimax game [55] as

log P(ds - gw(e) = 4)], (6)

arg min max E
w ® DieDs.ecDi
where dy(-) — R" is an auxiliary discriminator with pa-
rameters ¢ that tries to figure out the belonging domain of
the embedding e]. Optimal in Equation (6) yields a “domain-
invariant encoder” g, (-) and “domain discriminator” d(-),
which are the orange modules depicted in Figure 3.

2) Ensemble Learning: Recall that P(y|g(e)) depends on
domains. Thus, an identical classification head that projects
g (e) to an anomalous logit is insufficient to reserve domain-
specific individuals. Thereby, we adopt ideas from ensem-
ble learning to initialize multiple domain-specific classifiers
{fo,(-)}72,. As shown in Figure 3 (e.g. j = 3), fo, - g (") =
R? is designated during forward steps for eg from D;.

For a quick review, DG and EL aim to capture the homo-
geneity and heterogeneity among log domains, respectively.
Specifically, the homogeneity refers to general knowledge
common to logs, such as standard logging levels and the
general structure of log entries. Through DG-based alignment
across domains, we explicitly reinforce the extraction of this

general knowledge by training the encoder to project domains
into a shared distribution. Conversely, the heterogeneity de-
fines domain-specific characteristics, such as unique logging
components and formats. The data distribution that character-
izes this heterogeneity cannot be aligned by DG and would
be captured individually per domain by EL.

3) Optimization: There are two classification-based opti-
mization targets respectively from Equation (4) and Equation
(6). Specifically, for gradient-based optimization, we adopt
Focal loss [56] as a refined loss function to address imbalances
in the training data. Then, Equation (4) is transformed to
categorical classification objective as

Les =]E(eggg)eps - Z yfia{(l ,p{i)"/ logp{i , (D
t=0,1

where pl, = P(fo, - gu(€l) = t) and {a, o] 1,7 denote
data-related hyperparameters. Deriving from Equation (6), an
additional domain classification objective is:

Ladw = Eicp. [FL(R)(1—pf) logpf], (®)

where p¥ = P(dy - GRL - g,(e;) = k). Here, GRL refers to
the gradient reversal layer [57] as

(GRL- f())" = =Af'(:),GRL- f() = f(), (9

which enables direct one-pass gradient descent optimizations
in the whole minimax game (Equation (6)). Ultimately, we can
learn the detector from source domains by

L{8;}, ¢w) = Las({0;},w) + BLadu(;w)

where [represents a trade-off hyperparameters. Gradient-
based optimization is applied to Equation (10) as shown by
black arrows in Figure 3.

4) Inference: During inferences on target domains (illus-
trated by red arrows in Figure 3), the discriminator first figures
out the relevant scores of each source domain. Subsequently,
the corresponding domain-specific heads are activated and the
output is the weighted summarization of their opinions as

Py =1t)= Y P(fo, - gule) =)P(dy - gule) = j), (11)

JENA

(10)

where ¢ = 0, 1. Eventually, we obtain a lightweight detector
for downstream tasks that is deployable on edge devices and
capable of real-time inference. The computationally intensive
component, specifically the LLM-related module, is invoked
only once during centralized training. By decoupling training
from inference, MaidLog combines the advantages of both
LLM-centric and non-LLM approaches as a more practical
and efficient solution for resource-constrained systems.

IV. EXPERIMENTS

In this experimental section, the first three sections de-
tail the implementations, while the following eight sections
provide a comprehensive analysis. Our repository at https:
//github.com/hehepigd/maidlog includes additional experi-
ments that are omitted in the paper due to page limitations.

A. Datasets

Our datasets are sourced from two widely used sources:
Loghub [58] and Evlog [47]. From Loghub, we select twelve
datasets [31], [31], [59], [60], each comprising 2,000 log
lines randomly sampled from the examples provided in the
repository. Additionally, we include two entry-level labeled
datasets from Loghub: BGL (BG) and Thunderbird (TH),
and two from Evlog: Hadoop2 (H2) and Hadoop3 (H3) that
originate from the same software but different versions.

The experimental setup includes: (1) twelve source domains
(2,000 log entries each) for training, and (2) four target
domains (BG, TH, H2, H3) for testing, each containing over
2 million entries. Our evaluation is designed under strin-
gent data resource constraints: it uses minimal unlabeled
training data (significantly less than existing training-based
solutions [34], [36]) and ensures no overlap between training
and testing domains. Due to the computational infeasibility of
processing full datasets for LLM-centric baselines (more than
10 days), we use sampled subsets of BG and TH for testing.
Detailed statistics are available in our repository.

B. Baselines

To validate our design motivations, we conduct compre-
hensive comparisons between MaidLog with the SOTA LLM-
centric baselines as follows:

1) LogPrompt [41]: Liu et al. proposed a Chain-of-Thought
based to execute online log anomaly identification task.

2) LogGPT [40]: Hadadi et al. also focuses on prompt
engineering. While the original work did not formally name
the method, we designate it as LogGPT for clarity. For task
adaptation, we modify the input format to process individ-
ual log entries and adopt LogGPT’s zero-shot template.

Both LLM-centric baselines adopt a relatively similar work-
flow. Specifically, a log entry will be placed into specialized
prompts and then queried to the LLM, which will reason a
binary label for each entry. While LogPrompt pays more at-
tention to the feed additional human experiences (e.g., “Mark it
abnormal when and only when the alert is explicitly expressed
in textual content”), LogGPT defines anomalies more coarsely
by “associated with unlikely entries or entries indicating errors,
problems, or faults.” One may notice that the initial pseudo-
label generation round also falls in their procedure, MaidLog
obtains a calibration process and removes the generation of
LLM from inference time. For fair comparison, we evaluate
all methods using identical LLM configurations. Meanwhile,
non-LLM solutions, including semi-supervised [33] or su-
pervised [9], [27]-[29], are infeasible as they require sub-
stantial labeled data from target domains. For unsupervised
approaches, we implement three representative baselines:

1) DeepSVDD [50]: This method projects inputs into a latent
hypersphere. With assumptions introduced in Section III-A,
results far away from the centroid are considered anoma-
lous during inference. This approach has demonstrated
effectiveness in session-based log analysis, as evidenced
by its adoption in LogBERT [42], etc.

2) Unsupervised: We adapt our proposed detector by replac-
ing its objective with DeepSVDD’s hypersphere projection.

3) PCA [26]: This traditional method detects anomalies
through the L2-norm of feature vectors in the principal
component space. In aligning our tasks, we modify the log
feature vectors to {e7 }.

The unsupervised competitors share a similar preprocessing-
embedding-classifying process as MaidLog, despite a different
training object. We exclude other unsupervised methods that
either rely on session-based assumptions or are incompatible
with zero-shot scenarios [27], [31], [32], [35]. There are
several intriguing methods yet excluded due to dependence
on expert-annotated anchor data [61], [62]. Although transfer
learning approaches [34], [36] have been extensively studied,
they still require target domain data and are therefore unsuit-
able for our zero-shot scenario. To further disclose the internal
mechanisms of MaidLog, we set up the following ablations:

1) w/o Iter.. We substitute the iterative generation process
with the initial generation and train the classifier.

2) w/o Adver.: Here, we remove the adversarial part of the
classifier £,4, to check the improvement from domain
generalization by settings A = 0 in GRL layer. Particularly,
the discriminator is still trained for inferences.

3) w/o Ensem.: By altering {f;} with a single classification
head, we remove designs for domain individuals.
Particularly, we complement the Unsupervised with Unsur.

w/o Adver. and Unsur. w/o Ensem. that shares similar ablative

settings above for further validation. All the above baselines

obtain the same log embeddings, training data, and neural
network structure if they have. We measure performance by

Area Under Receiver Operating Characteristics (AUROC) [63]

since it serves as a threshold-free metric. AUROC is a larger-

better metric, where a score of 1 indicates a perfect classifier

(detector) that entirely separates the samples. All the experi-

ments are run with one NVIDIA-A800 GPU and 8 CPU cores.

C. Implementations

We employ the FastText library [64] in Python to encode
each preprocessed log line into 300-dimensional vectors. As
we obtain 12 source domains in the training set, a total of 12
heads are equipped in the classifier. AdamW [65] implemented
by PyTorch [66] is utilized with a learning rate of 0.0004.
The optimizer runs for 600 epochs with a batch size of 2000,
employing SWA [67] with the same learning rate starting at
epoch 360. In the loss objective function, we define

ap=n'/(2) 7). 0 =1-af, (12)
to balance the categories for each training domain and v = 2
in Equation (7). For the adversarial component, we pro-
gressively increase A in the GRL layer following [57] as
A =1-2/(1+¢%*%) where k € (0,1) refers the training
progress. we set 5 =1 to equally weight L. and L,q4,.

For pseudo-label generation, we evaluate three differ-
ent LLMs deployed using TGI [68]: Mistral-7B-Instruct-
V0.3 [69], Qwen-2.5-7B-Instruct [70], and Llama-3.1-8B-

TABLE I
OVERALL PERFORMANCES MEASURED BY AUROC(7T) WHERE THE TOP-3 ARE BOLD

Llama Qwen Mistral -
- Method H2 H3 BG TH Avg. | H2 H3 BG TH Avg. | H2 H3 BG TH Avg | ARQ)
1 LogPrompt 080 080 068 079 077 | 059 058 08 08 072 | 096 096 086 083 0.90 3.958
2 LogGPT 094 094 074 078 085 | 096 095 087 084 090 | 0.88 089 087 083 0.87 2917
3 PCA 0.11 0.11 024 0.01 0.12 | 0.11 0.11 024 0.01 0.12 | 0.11 0.11 024 0.01 0.12 11.00*
4 DeepSVDD 0.50 0.50 050 049 050 [050 050 050 049 050 | 0.50 050 050 049 050 | 7.583*
5 Unsupervised 052 053 093 003 050 | 052 053 093 003 050 | 052 053 093 0.03 050 | 6.250*
6 Un wio Adver. | 032 033 030 033 032 [032 033 030 033 032|032 033 030 033 032 | 9.500*
7 Un. wio Ensem. | 047 047 033 030 039 | 047 047 033 030 039 | 047 047 033 030 039 | 8917
8 w/o Adver. 083 082 031 096 0.73 091 090 073 096 088 | 085 085 085 096 0.88 3.625
9 w/o Ensem. 077 0.77 045 099 074 | 082 082 067 095 0382 | 0.79 0.78 0.84 096 0.84 | 4.750*
10 w/o Iter. 076 075 065 087 076 | 0.89 088 088 073 0.85 0.80 0.79 0.87 0.99 0.86 | 4.208*
11 MaidLog \ 076 0.76 0.73 099 0.81 \ 089 089 076 092 0.87 \ 094 093 088 095 0.93 \ 3.292
Instruct [71]. The verifier shares the same architectures and TABLE II

hyperparameters as the downstream classifier described above,
but without SWA, and the batch size is 200. For the por-
tion mentioned in Section III-B1 and label weights (used in
Equation (3)), please refer to our extended hyperparameter
analysis in the repository. Finally, for each query, we select:
6 examples for both “refine” and “filter”, while 4 normal plus
2 anomalous examples for “induce”. All three augmentations
are randomly selected and applied to each regeneration query.
The total calibration is executed for 42 rounds. The prompt
describing the classification task is derived from LogPrompt
and omitted due to limited pages (see our repository). Instead,
the three instructions used for calibration are as follows:

Induce: Below are some similar examples with likely pre-
assigned categories, which are not always the ground truth
and just describe how the system likes. Use them critically
to help you make your decision.

(1) log entry: log line 1, category: label 1 (2) ...

Filter: Additionally, given below are logs that are likely to
be normal. Please use these additions to help you make a
more reasonable judgment.

(1) log entry: example log line 1 (2) ...

Refine: Additionally, given below is a consecutive log se-
quence where the log entry to be judged is in the sequence.
Please use this sequence to help you make a more reasonable
judgment.

(1) log entry: example log line 1 (2) ...

D. Overall performance

Table I summarizes the final results of all implemented
methods. The top three results are highlighted in bold font for
emphasis. The average AUROC across the four testing datasets
is indicated by Avg., while AR refers to the average rank in
all twelve settings and * indicates a significant (o« = 0.1)
performance difference between MaidLog and the baseline in
the Wilcoxon signed-rank test.

MaidLog demonstrates improvements in addressing bias
and effectiveness issues. Regarding bias mitigation, MaidLog
prevents certain failure scenarios (e.g., 0.58 and 0.59 of H2

APPROXIMATE INFERENCE TIME (IT) ON ALL TESTING DATA
Method ‘ LogPrompt LogGPT MaidLog MaidLog CPU
1T \ 100 h 90 h 14 s 12s

and H3 when using Qwen and LogPrompt) and exhibits
more stable performance across datasets. These results indicate
that MaidLog not only improves generalizability but also
effectively mitigates the bias issue as introduced in Section
I. Furthermore, the comparison between LogPrompt and Log-
GPT reveals that LLMs exhibit distinct preferences for prompt
formats. Notably, Mistral achieves better performance with
LogPrompt, whereas Llama and Qwen show the opposite
trend. This observation further highlights the bias issue, which
will be detailed in Section IV-F. Notice that the results of
MaidLog in Table I are with prompt polished from LogPrompt,
our method consistently surpasses LogPrompt in terms of
average performance (up to +21% with Qwen).
Unsupervised methods cannot function effectively in
label-free settings. As introduced in Section III-A, while
unsupervised methods are theoretically designed for label-free
settings, they prove impractical in reality due to unrealistic
assumptions. Table I (rows 3-7) demonstrates that unsuper-
vised methods consistently underperform. This observation
again underscores the rationale behind the utilization of the
assignment process in Section III-B. An intriguing result is
that the Unsupervised achieves 0.93 at BG. In our discussion
of unsupervised methods, it is emphasized that the training
dataset must strictly contain only normal samples. Recall that
it only classifies by the distance to the latent center, where
all training samples are trained to project to the center as
“normal”. When the normal entries are more similar to the
training set than the anomalies, as in BG, it would show such
unexpected good results. On the contrary, when the abnormal
samples are more familiar to the detector, such as in TH, which
is thus projected to the center, it leads to a flawed result.
The proposed method effectively promotes generalizabil-
ity in zero-shot settings. Rows 8-10 in Table I present the ab-
lation results. First, MaidLog achieves improved performance
(+2.4% ~ 8.1%) using the calibration process described
in Section III-B, demonstrating the efficacy of multi-round
calibration. Then, when removing the adversarial objective

MaidLog-LogPrompt MaidLog-LogGPT LogPrompt LogGPT
0.95- Llama 0.95- Qwen 0.95 Mistral
0.901 0.901 0.90
8 0.851 0.851 0.851
& 0.807 0.801 0.801
=]
< 0.751 0.751 0.751
0.70 0.701 0.701
0.651

—————————————— (.65
0 5 10 15 20 25 30 35 40 45 50 0
Round

———————————— 0.65—
5 10 15 20 25 30 35 40 45 50 0
Round

5 10 15 20 25 30 35 40 45 50
Round

Fig. 4. Performances with different prompts and calibration rounds. The x-axis and the y-axis represent the iterations and the AUROC scores, respectively.

or the ensemble heads, the generalizability is degraded to
varying degrees. Specifically, the adversarial designs bring
+10.9% with Llama and +5.7% with Mistral while only
—1.1% with Qwen, revealing the benefits of domain-invariant
representations. Meanwhile, the ensemble heads also provide
remarkable promotions by +6.1% ~ 9.7%, showing the
necessity to allow domain individuals.

E. Computational efficiency

As shown in Table II, the detector of MaidLog achieves a
nearly 25000 x speedup, processing over 8 million embeddings
in approximately 14 seconds on a GPU. This demonstrates
its capability for online real-time log anomaly detection. In
contrast to LLM-centric solutions that require large-memory
GPUs, MaidLog operates efficiently on lightweight edge de-
vices due to its shallow architecture (only 0.382M parameters).

Furthermore, when deployed with ONNX Runtime [72]
using only a CPU, MaidLog processes all test embeddings in
12 seconds in a single forward pass, with a peak memory con-
sumption of 33GB. This suggests that data transfer overhead is
a major factor in the GPU inference time. Memory usage can
be further reduced by processing test entries in mini-batches.

A single training epoch of the detector requires only 0.37s
on an A800 GPU, utilizing 630MB of GPU memory and
approximately 20% of the GPU time. Overall, MaidLog
achieves significant computational efficiency during infer-
ence, making it suitable for resource-constrained scenarios.

F. Influences from prompts and assignments

Observing divergent performances between LogGPT and
LogPrompt prompts on tested LLMs, we modified our prompts
and calibration rounds of the assignment process to report
the corresponding results for a fair test. The results are
in Figure 4, where ‘“MaidLog-LogPrompt” and “MaidLog-
LogGPT” denote where the prompt is modified from, respec-
tively. Throughout the calibration process, both Qwen and
Mistral exhibit consistent performance improvements across
different prompt formats. Moreover, the performance disparity
between prompts decreases over calibration rounds, effectively
mitigating prompt-induced bias. Since different LLMs respond
inconsistently to different prompts, our calibration process
is designed to reduce this inherent uncertainty rather than
identify a single optimal prompt pair.

The only exception occurs with Llama using LogGPT
prompts, where the calibration curves exhibit an initial upward
trend followed by a decline. Although early calibration rounds
yield strong improvements over LLM-centric solutions, addi-
tional rounds eventually degrade performance. We derive two
key insights: (1) stronger LLMs (e.g., Mistral) benefit more
from our approach, while Llama performs the worst among the
three; (2) excessive calibration rounds may introduce noise.
Thus, we recommend using stronger LLMs (e.g., Mistral)
for stable performance or determining optimal calibration
rounds via validation on target applications. Although they are
common tricks in general settings or applications, we don’t
tune them due to the strictly invisible target domain settings.

G. Efficiency and effectiveness on pseudo-labels assignment

To comprehensively disclose the pseudo-labels assignment
process, we further conduct the proposed process with labeled
samples from H2 and H3. Using the first 12,000 samples
from both datasets, we execute the same pseudo-label assign-
ment process as for the training set over 60 rounds without
reinitializing the verifier. Corresponding results illustrated in
Figure 5 are averaged among three LLMs. First, the pseudo-
labels show consistent improvement across 60 calibration
rounds, with recall (shaded area) increasing from 0.35 to
0.92. Meanwhile, the precision is improved from 0.38 to
0.68 in 52 rounds. As the anomalies only share 1.1% in the
samples, improvements in both precision and recall indicate
the corrections have happened to both mislabeled normal (false
negative) and anomalous (false positive) logs. It’s observed
that the precision undergoes a slight decline during subsequent
final rounds, indicating an escalation in false positives. This
aligns with the performance deterioration observed when using
Llama with MaidLog-LogGPT in Figure 4, where noise occurs
due to inappropriate over-calibration in MaidLog.

For better clarity, we export the intermediate statistics in
Table III, where each number denotes the average result among
the corresponding rounds. The observations are as follows:

o As expected, the verifier can effectively identify misla-
beled candidates, whose error rates (> 30%) are higher
than those remaining support set (< 0.2%). Thereby, our
statement in Section III-B1 is empirically demonstrated.

« The augmented generation could correct the selected
mislabels, bringing consistent improvements (F1: 0.44 —

TABLE III
AVERAGE STATISTICS AMONG THE ITERATIONS AS IN FIGURE 5

120 | 2140 | 41-60

Number of Iterations |

Error rate in candidate set D, 32.4% | 35.0% 31.3%
Error rate in support set Dg 0.2% 0.2% 0.03%
Average F1 score in all samples 0.44 0.52 0.70
TP Ratio FN Ratio — Precision — F1
1.0
0.8
0.6
0.4+
0.21
0.0 : : : : :
0 10 20 30 40 50
Fig. 5. Improvements throughout assignment iterations, where TP and FN

respectively denote true positive and false negative.
0.70) as anticipated in Section III-B2.

Additionally, the contributions of the three augmented
prompts (i.e., induce, filter, and refine) are presented in Ta-
ble 1V, showing that all three prompts improve the final
label assignment. This demonstrates our approach of fully
leveraging LLM through diverse prompting strategies.

To demonstrate applicability for resource-constrained users
(e.g., those with limited LLM access during training), we also
report the total LLM inference calls. For the improvements
shown in Figure 5, Mistral, Qwen, and Llama require 5,305,
16,532, and 18,089 additional inference calls across all 60
rounds, respectively. MaidLog requires only 55% more calls
(on average) across all 60 rounds while achieving signif-
icant label quality improvements, demonstrating strong
applicability for resource-constrained users.

Additionally, we also try to see if the LLM itself can act as
an in-place mislabel verifier by outputting an extra confidence
score ([0, 1]) to its response. Based on the results of a subset
from H2 with Mistral, it’s found to be inapplicable since (a)
the confidence distribution is highly skewed, where 90.73% of
all samples and 45.37% of mislabeled samples get confidence
1.0; (b) there is only a weak positive relationship between
higher confidence and more accurate assignments (AUROC
0.73), even a negative correlation for those anomalous entries
(AUROC 0.32). Overall, the confidence of LLMs cannot imply
the correctness of pseudo-labels, underlining the motivation of
the auxiliary verifier.

H. Benefits from multiple domains

One may also be interested in the multiple-domain settings.
To demonstrate the improvement achieved by incorporating
knowledge from multiple domains, we first rank each training
domain’s contribution based on its average weights from the
discriminator across test domains. Then, we progressively
remove less contributing domains (with their corresponding
classification heads) while maintaining the same optimization

TABLE IV
ABLATIVE RESULTS AT 60 ITERATIONS
Used prompts | All | - Induce | - Filter | - Refine
Flscore | 0.80 | 065 | 066 | 027
B H2 [H3 [BG [TH -#- Average
10
T T
-
0 0.6
o]
&
S
<04
0.2
0.0
Top 3 Top 6 Top 9 All 12

Number of Domains

Fig. 6. AUROC when domains are removed with the Mistral, where Top-z
denotes that a remaining domains are utilized during training the detector.

steps. As shown in Figure 6, the average performance is
improved when more domains are involved, except for a slight
degradation on BG. Overall, consistent with the improvements
observed in ensemble learning and domain generalization de-
signs during ablative experiments, this demonstrates that Maid-
Logenhances generalization ability through explicit multi-
domain settings. We also visualize the features to disclose from
a parametric view, which illustrates a better in-distribution
embedding space with DG and can be found in the reposi-
tory. Meanwhile, unexpectedly observed embedding clusters,
indicating that the encoder cannot distinguish these entries,
occur in the test entries without alignment (DG), whereas
there are none with DG. As discussed in Section III-C,
leveraging the homogeneity and heterogeneity can improve
the generalization of the log anomaly detector.

1. Case studies on pseudo labels

We further conduct a case study to empirically evaluate the
pseudo labels on the training set with Mistral, including the
following observations:

o The anomalies that have general and clear keywords
are well recalled. For instance, entries containing ex-
plicit abnormal keywords (bold), like “psu failure am-
bient=28" or “mtalk.google.com:5228 error: Could not
connect through proxy proxy.cse.cuhk.edu.hk:5070 - Proxy
server cannot establish a connection with the target, status
code 403", are well recalled as anomalies.

« The pseudo labels are less precise for logs describing am-
biguous events. Certain entries, such as ‘“PacketResponder
2 for block blk_-6670958622368987959 terminating”
and ‘“‘authentication failure; logname= uid=0 euid=0
tty=NODEVssh ruser= rhost=65.166.159.14” (whether a
failed SSH login is considered an anomaly or not, depending
on the user cases), are marked as anomalous. Such ambigu-
ity also explains higher recalls than precisions in Figure 5.
As a consequence, MaidLog trains the detector with soft
labels where the ambiguous ones can obtain intermediate
states and are distinguished from more abnormal ones.

TABLE V

AUROC WITH VARIOUS ARCHITECTURES WHERE THE TOP-3 ARE BOLD
- | Basic method | Embedder | Classifier (Params.) | Avg.
a MaidLog FastText Proposed (0.3M) 0.93
MaidLog FastText-r Proposed (0.3M) 0.88
MaidLog BERT Proposed (0.5M) 0.60
b MaidLog RoBERTa Proposed (0.5M) 0.93
MaidLog BART* Proposed (0.5M) 0.37
NeuralLog BERT Trans. block (31.5M) 0.93
c NeuralLog RoBERTa Trans. block (31.5M) 0.65
PreLog BART* Trans. decoder (134.7M) | 0.96

J. Hyperparameter analysis and deployment guidelines

To evaluate the stability of the proposed detector with
respect to hyperparameters, we adjust S in Equation (10) and
v in Equation (7) to test if the proposed detector is stable. Due
to the page limitation, the detailed results can be found in our
GitHub repository. For a short summarization, The detector
exhibits stable performance with general v and /3 values that
are of non-extreme value. For deployment, we suggest setting
v=2and 8 = 1. And, {a.} are class balancing parameters
set by Equation (12). These settings confirm the stability of
the generalizable detector with respect to its hyperparameters.

For the hyperparameters during pseudo-label assignment,
we have varied the following three key factors and observed
the improvements of pseudo-labels in most cases. In short,
the resulting principles for deployment are as follows: (a)
keep the weights w; in Equation (3) roundly increasing; (b)
roundly decrease the candidate portion and (c) set a lower
than 0.5 evidence portion in Section III-B1. With the above
settings, one can obtain satisfactory pseudo-labels. Still, it’s
recommended to adopt our primary, verified implementation
in Section IV-C at first.

K. Alternative preprocessors, embedders, and detectors

We further analyze MaidLog with alternative components,
as summarized in Table V. Specifically: (a) FastText-r uses
no preprocessing (as in PreLog [30]) and employs FastText as
the embedder; (b) replacing the embedder with BERT [73] and
RoBERTa [74] (as in NeuralLog [28]), and BART* (a post-
trained BART [75] in PreLog). (¢) Meanwhile, we include
NeuralLog and PreLog as baselines, which are applicable
and modified for entry-level identification. Unlike the shallow
detector with FastText in MaidLog, these baselines employ
BERT and BART* with a transformer encoder block and an
entire transformer decoder as detectors, respectively. Notice
that these are supervised methods, with training labels gener-
ated via our assignment process based on Mistral.

We have the following observations. Firstly, the prepro-
cessing step is helpful in these settings. Secondly, Fast-
Text performs comparably to the best pretrained transformers
(i.e., RoBERTa). Noticing that FastText doesn’t require a
GPU or high-performance CPU, it’s a more attractive
choice under computational resource constraints. Ulti-
mately, MaidLog shows comparable performance to Neural-
Log with significantly fewer parameters. Although PreLog
yields the highest AUROC (+0.03 compared to MaidLog), it

is less attractive under computational constraints: the official
implementation requires over twenty hours to infer all test
entries. To summarize, the components within the cur-
rent MaidLog implementation strike an excellent balance
between performance and efficiency. Please refer to the
repository for extended results.

V. RELATED WORKS

In terms of automated log data management, related tasks
can be coarsely categorized into four hierarchical levels:

1) Logging level: Comprehensively log system states to en-
able further utilization of logs. Related studies focus on
logging techniques for specific scenarios [1]-[3], etc.

2) Processing level: Analyze log attributes or organize raw
log entries into structural formats, e.g., structure extrac-
tion [4], parsing [5]-[8], anomaly detection [9]-[12], etc.

3) Organization level: Store and organize processed log
entries for further access. Specifically, this level supports
accessing massive logs in a database-like manner for vari-
ous scenarios, such as cloud log engines [13], [14], etc.

4) Application level: Mine knowledge from logs and utilize
it for system optimization. Unlike the previous levels, the
application level includes a vast number of diversified
tasks such as user profiling [15], [16], large system di-
agnosing [17], query optimization [18], natural language
to SQL [19], or error recovery [20], and so on.

The primary objective of all levels is to diagnose system
runtime comprehensively with logs. Subsequently, we review
related studies from the following two technical lines:

Conventional Log Data Management and ML in Log
Data Management. For the primary parsing step, numerous
studies, including Drain [76], Spell [7], Prefix-Graph [6], etc.,
are proposed and build fundamentals for sequential analysis.
In particular, Zhu et al. [77] provided a benchmark suite
and tested various parsing solutions, while Song et al. [12]
proposed a pipeline for anomaly detection development.
Based on parsers, PleLog [33], DeepLog [31], MoniLog [10],
SpikeLog [9] and [11], etc., have been derived to conduct
anomaly detections based on parsed event sequences. The
majority of them utilized ML techniques like recurrent neural
networks, meta-learning [36], and domain adaptation [34],
pioneering the power of data-driven automated log analy-
sis. Meanwhile, researchers point out that parser-based log
analysis always suffers from parsing errors, especially when
log format changes [40], [47], inspiring efforts on parser-
free methods. This is mainly done by treating logs as semi-
structured natural language, utilizing tools like Fasttext [51]
to embed logs. Then, for instance, RobustLog [28] utilizes
LSTM [78] to conduct supervised anomaly detection.

Log Data Management and Mining in the Era of LMs &
LLMs. As LM shows remarkable generalizability, researchers
are devoted to exploring their power in log data management
and mining. Firstly, for log anomaly tasks, early trials include
NeuralLog [29] and LogBERT [42] take BERT [73] as a
log encoder, then utilize Transformers [79] decoder and pre-
diction scores to detect anomalies, respectively. Additionally,

EvLog [47] and PreLog [30] follow up and extend bonus
mechanisms, such as auxiliary clustering and contrastive learn-
ing, achieving remarkable performance. After the power of
even larger LMs has been certified, LLMs for log data mining
have also been preliminarily discovered. Specifically, Zhong et
al. [39] propose a mixed log parser with LLM, demonstrating
the potential of LLM in the area of Log. Concurrently, Ma
et al. [38] and Liu et al. [80] also propose their competitive
solution for the same task. Particularly, as LLMs show ex-
cellent adaptability to multiple tasks, researchers also explore
all-in-one management with LLMs, e.g., [41], [43], [81].

VI. DISCUSSION
A. Trading Effectiveness for Generalization and Efficiency

We further discuss the standalone (i.e., one-by-one) entry-
level log anomaly identification task. Except for the stud-
ied entry anomalies, log anomalies also include session-
based anomalies, such as time anomalies or repeat anomalies,
etc. [45]. Specifically, we choose the emerging entry-level
detection [48], [82], since relying on context has the following
critical drawbacks:

o We prioritize generalization, which is harder to achieve
with session-based detection. Recall that the organization
of sessions varies across systems, and the entries will be
interleaved as multiple applications logging simultaneously,
session organization will be unexpectedly complicated and
involve expensive engineering efforts to tune such factors
system-by-system.

« Entry-level detection is more computationally efficient than
modern session-based detection. The mainstream non-LLM
solutions (e.g, [27], [31]) or LLM-centric solutions (e.g.,
[40], [42]) require processing each entry at least once as
MaidLog, but incur additional consumption to mine the
sequence features by recurrent neural networks or self-
attention. Depending on the implementation, the computa-
tional complexity of session-based methods grows at least
linearly with session length, worse than that of MaidLog.

o In applications, the majority of entries are independent.
Specifically, [46] has analyzed the application logs from the
IBM Cloud and points out that 94.2% of entries are entry-
level independent operational logs, while only 0.7% of
entries are transactional entries in logical sessions. Despite
the existing study [48], Amazon CloudWatch logs (for
AWS) also detect anomalies at the entry-level according to
their documents and video demonstrations [82].

In summary, MaidLog primarily employs entry-level iden-
tification to achieve superior generalization and efficiency.
We leave the implementation to session-level detection as an
intriguing future work by, e.g., treating multiple entries as a
whole session entry as in LogPrompt or LogGPT, since the
users may still want alternative tasks.

B. Heuristics for Calibration Early Stopping

Currently, we employ a pseudo-label cache (Equation (3))
as a heuristic with a single hyperparameter w to improve the
convergence of pseudo-labels, rather than using a deterministic

early-stopping mechanism. This design choice is motivated
by the fact that representative early-stopping strategies (e.g.,
for training loss) often require additional hyperparameters
(such as patience and threshold), which we found during
the development of MaidLog to be more difficult to tune
than w. Given the acceptable performance of the cache-based
approach, we leave the implementation of a rigorous early-
stopping mechanism as future work.

In practice, users may run the calibration for a sufficiently
large number of rounds (e.g., 60) or validate using their own
data. However, in rare cases where over-calibration occurs
(e.g., Llama with MaidLog-LogGPT in Figure 4), a heuristic
to detect such behavior and trigger early stopping could be
beneficial. We plan to investigate whether signals from noise-
aware learning, cross-domain matching [83], or improved
confidence estimation methods for LLMs can serve as effective
criteria for early termination.

VII. CONCLUSION

In this study, we present MaidLog, a novel large language
model (LLM)-assisted framework for efficient and effective
log anomaly identification. Motivated by the potential of
LLMs to serve as cost-effective label generators, we have
developed a pseudo-label assignment process, rendering Maid-
Log a label-free architecture. Furthermore, we introduce a
generalizable anomaly detector tailored to the unique char-
acteristics of log data, thereby endowing MaidLog with zero-
shot transfer capabilities. The performance of MaidLog has
been validated through extensive experiments on real-world
datasets, confirming our initial motivations and setting a
foundation for the future integration of LLMs into various
functionalities within log data management.

VIII. ACKNOWLEDGMENT

Lei Chen’s work is partially supported by National Key
Research and Development Program of China Grant No.
2023YFF0725100, National Science Foundation of China
(NSFC) under Grant No. U22B2060, Guangdong-Hong Kong
Technology Innovation Joint Funding Scheme Project No.
2024A0505040012, the Hong Kong RGC GRF Project
16213620, RIF Project R6020-19, AOE Project AoE/E-603/18,
Theme-based project TRS T41-603/20R, CRF Project C2004-
21G, Key Areas Special Project of Guangdong Provincial
Universities 2024ZDZX1006, Guangdong Province Science
and Technology Plan Project 2023A0505030011, Guangzhou
municipality big data intelligence key lab, 2023A03J0012,
Hong Kong ITC ITF grants MHX/078/21 and PRP/004/22FX,
Zhujiang scholar program 2021JC02X170, Microsoft Research
Asia Collaborative Research Grant, HKUST-Webank joint
research lab and 2023 HKUST Shenzhen-Hong Kong Col-
laborative Innovation Institute Green Sustainability Special
Fund, from Shui On Xintiandi and the InnoSpace GBA.
Jiachuan Wang’s work is supported in part by JST CREST
(JPMICR22M2). Libin Zheng is sponsored by the National
Natural Science Foundation of China, No. 62472455 and No.
U22B2060.

AI-GENERATED CONTENT ACKNOWLEDGMENT

Generative large language models were ethically utilized
in this work for manuscript refinement and code assistance
purposes. Specifically, DeepSeek-V3 was used to enhance the
clarity and readability of the manuscript, and GPT-4 Copilot
was employed to aid in implementing and debugging code.
The authors carefully reviewed and, where necessary, edited
all Al-assisted content to ensure reliability, accuracy, and
consistency with the author’s intention, underlying data, and
methods. The authors take full responsibility for the integrity
and originality of all scientific content.

[1]

[2]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

S. Lee and B. Moon, “Transactional in-page logging for multiversion
read consistency and recovery,” in /CDE. IEEE Computer Society,
2011, pp. 876-887.

R. Fang, H. Hsiao, B. He, C. Mohan, and Y. Wang, “High performance
database logging using storage class memory,” in ICDE. IEEE
Computer Society, 2011, pp. 1221-1231.

S. Oh, W. Kim, J. Seo, H. Song, S. H. Noh, and B. Nam, “Doubleheader
logging: Eliminating journal write overhead for mobile DBMS,” in
ICDE. IEEE, 2020, pp. 1237-1248.

Y. Gao, S. Huang, and A. G. Parameswaran, ‘“Navigating the data
lake with DATAMARAN: automatically extracting structure from log
datasets,” in SIGMOD Conference. ACM, 2018, pp. 943-958.

X. Chen, J. Chen, J. Shi, P. Wang, and W. Wang, “EPAS: Efficient
online log parsing via asynchronous scheduling of llm queries,” in ICDE.
IEEE, 2025, pp. 4025-4037.

G. Chu, J. Wang, Q. Qi, H. Sun, S. Tao, and J. Liao, “Prefix-graph:
A versatile log parsing approach merging prefix tree with probabilistic
graph,” in ICDE. 1EEE, 2021, pp. 2411-2422.

M. Du and F. Li, “Spell: Online streaming parsing of large unstructured
system logs,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 11, pp. 2213—
2227, 2019.

A. Agrawal, R. Karlupia, and R. Gupta, “Logan: A distributed online
log parser,” in ICDE. 1EEE, 2019, pp. 1946-1951.

J. Qi, Z. Luan, S. Huang, C. J. Fung, H. Yang, and D. Qian, “Spikelog:
Log-based anomaly detection via potential-assisted spiking neuron net-
work,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 12, pp. 9322-9335,
2024.

A. Vervaet, “Monilog: An automated log-based anomaly detection
system for cloud computing infrastructures,” in /CDE. IEEE, 2021,
pp. 2739-2743.

Y. Tang, Z. Zhang, K. Zhao, L. Fang, Z. Li, and W. Chen, “Substructure-
aware log anomaly detection,” Proc. VLDB Endow., vol. 18, no. 2, pp.
213-225, 2024.

X. Song, Y. Zhu, J. Wu, B. Liu, and H. Wei, “Adops: An anomaly
detection pipeline in structured logs,” Proc. VLDB Endow., vol. 16,
no. 12, pp. 4050-4053, 2023.

W. Cao, X. Feng, B. Liang, T. Zhang, Y. Gao, Y. Zhang, and F. Li,
“Logstore: A cloud-native and multi-tenant log database,” in SIGMOD
Conference. ACM, 2021, pp. 2464-2476.

Y. Zhang, G. Cong, J. Qu, R. Xu, Y. Fu, W. Li, FE. Hu, J. Liu, W. Zhang,
and K. Zheng, “ESTELLE: an efficient and cost-effective cloud log
engine,” in SIGMOD Conference Companion. ~ACM, 2024, pp. 201-
213.

Y. Fan, Y. Chen, K. Tung, K. Wu, and A. L. P. Chen, “A framework
for enabling user preference profiling through wi-fi logs,” IEEE Trans.
Knowl. Data Eng., vol. 28, no. 3, pp. 592-603, 2016.

C. Zhang, S. Zhang, C. Lei, and P. Lin, “Burstiness in query log: Web
search analysis by combining global and local evidences,” in ICDE.
IEEE Computer Society, 2018, pp. 1388-1391.

M. Markakis, B. Youngmann, T. Gao, Z. Zhang, R. Shahout, P. B. Chen,
C. Liu, I. Sabek, and M. J. Cafarella, “From logs to causal inference:
Diagnosing large systems,” Proc. VLDB Endow., vol. 18, no. 2, pp. 158—
172, 2024.

K. Vaidya, A. Dutt, V. R. Narasayya, and S. Chaudhuri, “Leveraging
query logs and machine learning for parametric query optimization,”
Proc. VLDB Endow., vol. 15, no. 3, pp. 401413, 2021.

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

(27

[28]

[29]
[30]

[31]

[32]

[33]

[34]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

C. Baik, H. V. Jagadish, and Y. Li, “Bridging the semantic gap with
SQL query logs in natural language interfaces to databases,” in ICDE.
IEEE, 2019, pp. 374-385.

T. Talius, R. Dhamankar, A. Dumitrache, and H. Kodavalla, “Transaction
log based application error recovery and point in-time query,” Proc.
VLDB Endow., vol. 5, no. 12, pp. 1781-1789, 2012.

S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data
system logs using convolutional neural network,” in DASC/PiCom/Dat-
aCom/CyberSciTech. 1EEE Computer Society, 2018, pp. 151-158.

J. Breier and J. BraniSovd, “Anomaly detection from log files using data
mining techniques,” in Information Science and Applications. Springer,
2015, pp. 449-457.

Y. Zhang and A. Sivasubramaniam, “Failure prediction in IBM blue-
gene/l event logs,” in IPDPS. 1EEE, 2008, pp. 1-5.

V. Le and H. Zhang, “Log-based anomaly detection with deep learning:
How far are we?” in ICSE. ACM, 2022, pp. 1356-1367.

J. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from
console logs for system problem detection,” in USENIX ATC. USENIX
Association, 2010.

W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “De-
tecting large-scale system problems by mining console logs,” in ICML.
Omnipress, 2010, pp. 37-46.

W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs,” in IJCAL
ijcai.org, 2019, pp. 4739-4745.

X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J. Lou, M. Chintalapati, F. Shen,
and D. Zhang, “Robust log-based anomaly detection on unstable log
data,” in ESEC/SIGSOFT FSE. ACM, 2019, pp. 807-817.

V. Le and H. Zhang, “Log-based anomaly detection without log parsing,”
in ASE. IEEE, 2021, pp. 492-504.

——, “Prelog: A pre-trained model for log analytics,” Proc. ACM
Manag. Data, vol. 2, no. 3, p. 163, 2024.

M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in CCS. ACM,
2017, pp. 1285-1298.

Q. Lin, H. Zhang, J. Lou, Y. Zhang, and X. Chen, “Log clustering based
problem identification for online service systems,” in ICSE (Companion
Volume). ACM, 2016, pp. 102-111.

L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Semi-supervised log-based anomaly detection via probabilistic label
estimation,” in /CSE. IEEE, 2021, pp. 1448-1460.

R. Chen, S. Zhang, D. Li, Y. Zhang, F. Guo, W. Meng, D. Pei, Y. Zhang,
X. Chen, and Y. Liu, “Logtransfer: Cross-system log anomaly detection
for software systems with transfer learning,” in ISSRE. IEEE, 2020,
pp. 37-47.

P. Jia, S. Cai, B. C. Ooi, P. Wang, and Y. Xiong, “Robust and transferable
log-based anomaly detection,” Proc. ACM Manag. Data, vol. 1, no. 1,
pp. 64:1-64:26, 2023.

C. Zhang, T. Jia, G. Shen, P. Zhu, and Y. Li, “Metalog: Generalizable
cross-system anomaly detection from logs with meta-learning,” in /CSE.
ACM, 2024, pp. 154:1-154:12.

D. Roy, X. Zhang, R. Bhave, C. Bansal, P. H. B. Las-Casas, R. Fonseca,
and S. Rajmohan, “Exploring llm-based agents for root cause analysis,”
in SIGSOFT FSE Companion. ACM, 2024, pp. 208-219.

Z. Ma, A. R. Chen, D. J. Kim, T. Chen, and S. Wang, “Llmparser: An
exploratory study on using large language models for log parsing,” in
ICSE. ACM, 2024, pp. 99:1-99:13.

A. Zhong, D. Mo, G. Liu, J. Liu, Q. Lu, Q. Zhou, J. Wu, Q. Li, and
Q. Wen, “Logparser-llm: Advancing efficient log parsing with large
language models,” in KDD. ACM, 2024, pp. 4559-4570.

F. Hadadi, Q. Xu, D. Bianculli, and L. C. Briand, “Anomaly detection
on unstable logs with GPT models,” CoRR, vol. abs/2406.07467, 2024.
Y. Liu, S. Tao, W. Meng, J. Wang, W. Ma, Y. Chen, Y. Zhao, H. Yang,
and Y. Jiang, “Interpretable online log analysis using large language
models with prompt strategies,” in ICPC. ACM, 2024, pp. 35-46.

H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via
BERT,” in IJCNN. IEEE, 2021, pp. 1-8.

T. Cui, S. Ma, Z. Chen, T. Xiao, S. Tao, Y. Liu, S. Zhang, D. Lin,
C. Liu, Y. Cai, W. Meng, Y. Sun, and D. Pei, “Logeval: A comprehensive
benchmark suite for large language models in log analysis,” CoRR, vol.
abs/2407.01896, 2024.

J. Pan, S. L. Wong, and Y. Yuan, “Raglog: Log anomaly detection using
retrieval augmented generation,” CoRR, vol. abs/2311.05261, 2023.

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

M. Landauer, F. Skopik, and M. Wurzenberger, “A critical review of
common log data sets used for evaluation of sequence-based anomaly
detection techniques,” Proc. ACM Softw. Eng., vol. 1, no. FSE, pp. 1354—
1375, 2024.

T. Jia, L. Yang, P. Chen, Y. Li, F. Meng, and J. Xu, “Logsed: Anomaly
diagnosis through mining time-weighted control flow graph in logs,” in
CLOUD. IEEE Computer Society, 2017, pp. 447-455.

Y. Huo, C. Lee, Y. Su, S. Shan, J. Liu, and M. R. Lyu, “Evlog:
Identifying anomalous logs over software evolution,” in ISSRE. IEEE,
2023, pp. 391-402.

W. Zhang, Q. Zhang, E. Yu, Y. Ren, Y. Meng, M. Qiu, and J. Wang,
“Lograg: Semi-supervised log-based anomaly detection with retrieval-
augmented generation,” in /JCWS. IEEE, 2024, pp. 1100-1102.

L. Ma, L. Cao, P. M. VanNostrand, D. M. Hofmann, Y. Su, and E. A.
Rundensteiner, “Pluto: Sample selection for robust anomaly detection on
polluted log data,” Proc. ACM Manag. Data, vol. 2, no. 4, pp. 203:1-
203:25, 2024.

L. Ruff, N. Gornitz, L. Deecke, S. A. Siddiqui, R. A. Vandermeulen,
A. Binder, E. Miiller, and M. Kloft, “Deep one-class classification,” in
ICML, ser. Proceedings of Machine Learning Research, vol. 80. PMLR,
2018, pp. 4390-4399.

A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext.zip: Compressing text classification models,” CoRR, vol.
abs/1612.03651, 2016.

M. Li and C. Zhu, “Noisy label processing for classification: A survey,”
CoRR, vol. abs/2404.04159, 2024.

E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness,
“Unsupervised label noise modeling and loss correction,” in ICML, ser.
Proceedings of Machine Learning Research, vol. 97. PMLR, 2019, pp.
312-321.

K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain gener-
alization: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45,
no. 4, pp. 43964415, 2023.

Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep
domain generalization via conditional invariant adversarial networks,”
in ECCV (15), ser. Lecture Notes in Computer Science, vol. 11219.
Springer, 2018, pp. 647-663.

T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dolldr, “Focal loss for
dense object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 2, pp. 318-327, 2020.

Y. Ganin and V. S. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in ICML, ser. JMLR Workshop and Conference
Proceedings, vol. 37. JMLR.org, 2015, pp. 1180-1189.

J. Zhu, S. He, P. He, J. Liu, and M. R. Lyu, “Loghub: A large collection
of system log datasets for ai-driven log analytics,” in ISSRE. IEEE,
2023, pp. 355-366.

A. Makanju, N. Zincir-Heywood, and E. E. Milios, “Clustering event
logs using iterative partitioning,” in KDD. ACM, 2009, pp. 1255-1264.
P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on log
parsing and its use in log mining,” in DSN. IEEE Computer Society,
2016, pp. 654-661.

T. Jia, Y. Li, Y. Yang, G. Huang, and Z. Wu, “Augmenting log-
based anomaly detection models to reduce false anomalies with human
feedback,” in KDD. ACM, 2022, pp. 3081-3089.

J. Liu, J. Huang, Y. Huo, Z. Jiang, J. Gu, Z. Chen, C. Feng, M. Yan,
and M. R. Lyu, “Log-based Anomaly Detection based on EVT Theory
with feedback,” Sep. 2023.

J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (roc) curve.” Radiology, vol. 143, no. 1,
pp- 29-36, 1982.

F. Research, “Word vectors for 157 languages - fastText — fasttext.cc,”
https://fasttext.cc/docs/en/crawl-vectors.html, [Accessed 02-09-2025].
I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in ICLR (Poster). OpenReview.net, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in NeurIPS, 2019, pp. 8024-8035.
P. Izmailov, D. Podoprikhin, T. Garipov, D. P. Vetrov, and A. G. Wilson,
“Averaging weights leads to wider optima and better generalization,” in
UAI. AUAI Press, 2018, pp. 876-885.

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

(771

[78]

(791

[80]

[81]

[82]

(83]

Huggingface, “GitHub - huggingface/text-generation-inference: Large

Lan%uage Model Text Generation Inference — github.com,” https:
//github.com/huggingface/text- generation-inference, [Accessed 02-09-

2025].

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de Las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R.
Lavaud, M. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang, T. Lacroix,
and W. E. Sayed, “Mistral 7b,” CoRR, vol. abs/2310.06825, 2023.

A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu,
F. Huang, H. Wei, H. Lin, J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang,
J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang, L. Yu, M. Li, M. Xue,
P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Xia, X. Ren, X. Ren, Y. Fan,
Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu, “Qwen2.5
technical report,” CoRR, vol. abs/2412.15115, 2024.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan, A. Goyal, A. Hartshorn,
A. Yang, A. Mitra, A. Sravankumar, A. Korenev, A. Hinsvark, A. Rao,
A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru, B. Roziere, B. Biron,
B. Tang, B. Chern, C. Caucheteux, C. Nayak, C. Bi, C. Marra,
C. McConnell, C. Keller, C. Touret, C. Wu, C. Wong, C. C. Ferrer,
C. Nikolaidis, D. Allonsius, D. Song, D. Pintz, D. Livshits, D. Esiobu,
D. Choudhary, D. Mahajan, D. Garcia-Olano, D. Perino, D. Hupkes,
E. Lakomkin, E. AlBadawy, E. Lobanova, E. Dinan, E. M. Smith,
F. Radenovic, F. Zhang, G. Synnaeve, G. Lee, G. L. Anderson, G. Nail,
G. Mialon, G. Pang, G. Cucurell, H. Nguyen, H. Korevaar, H. Xu,
H. Touvron, 1. Zarov, 1. A. Ibarra, I. M. Kloumann, I. Misra, I. Evtimov,
J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park, J. Mahadeokar, J. Shah,
J. van der Linde, J. Billock, J. Hong, J. Lee, J. Fu, J. Chi, J. Huang,
J. Liu, J. Wang, J. Yu, J. Bitton, J. Spisak, J. Park, J. Rocca, J. Johnstun,
J. Saxe, J. Jia, K. V. Alwala, K. Upasani, K. Plawiak, K. Li, K. Heafield,
K. Stone, and et al., “The llama 3 herd of models,” CoRR, vol.
abs/2407.21783, 2024.

O. R. developers, “Onnx runtime,” https://onnxruntime.ai/, 2021, ver-
sion: 1.22.0.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT (1). Association for Computational Linguistics, 2019, pp. 4171—
4186.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” CoRR, vol. abs/1907.11692, 2019.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” in ACL. Association for Computational Linguistics,
2020, pp. 7871-7880.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in ICWS. IEEE, 2017, pp. 33-40.

J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” in /CSE (SEIP). 1EEE /
ACM, 2019, pp. 121-130.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 17351780, 1997.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp- 5998-6008.

Y. Liu, X. Zhang, S. He, H. Zhang, L. Li, Y. Kang, Y. Xu, M. Ma,
Q. Lin, Y. Dang, S. Rajmohan, and D. Zhang, “Uniparser: A unified
log parser for heterogeneous log data,” in WWW. ACM, 2022, pp.
1893-1901.

C. Ouyang, L. Yue, S. Di, L. Zheng, L. Yue, S. Pan, J. Yin, and
M. Zhang, “Code2mcp: Transforming code repositories into MCP ser-
vices,” CoRR, vol. abs/2509.05941, 2025.

A. Cloud, “Log anomaly detection - Amazon CloudWatch
Logs docs.aws.amazon.com,” https://docs.aws.amazon.com/
AmazonCloudWatch/latest/logs/LogsAnomalyDetection.html,
[Accessed 02-09-2025].

Z. Wang, Z. Gao, Y. Yang, G. Wang, C. Jiao, and H. T. Shen, “Geometric
matching for cross-modal retrieval,” IEEE Trans. Neural Networks
Learn. Syst., vol. 36, no. 3, pp. 5509-5521, 2025.

